Patents by Inventor Ronen Adato

Ronen Adato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10571606
    Abstract: The present invention generally relates to nanoantenna arrays and fabrication methods of said nanoantenna arrays. In particular, one aspect relates to nanoantenna arrays including nanostructures of predefined shapes in predefined patterns, which results in collective excitement of surface plasmons. The nanoantenna arrays can be used for spectroscopy and nanospectroscopy. Another aspects of the present invention relate to a method of high-throughput fabrication of nanoantenna arrays includes fabricating a reusable nanostencil for nanostensil lithography (NSL) which provides a mask to deposit materials onto virtually any support, such as flexible and thin-film stretchable supports. The nanostencil lithography methods enable high quality, high-throughput fabrication of nanostructures on conducting, non-conducting and magnetic supports. The nanostencil can be prepared by etching nanoapertures of predefined patterns into a waffer or ceramic membrane.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 25, 2020
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Hatice Altug, Ahmet Ali Yanik, Shyamsunder Erramilli, Ronen Adato, Serap Aksu, Min Huang, Alp Artar
  • Patent number: 10282833
    Abstract: Optical verification testing of an IC includes obtaining images of the IC by, for each image: (i) illuminating the IC with excitation light, wherein the excitation light corresponds to a respective specific optical excitation of a predefined spectrum of optical excitations (e.g., wavelength spectrum); and (ii) detecting scattered light from the IC in response to the specific optical excitation. For each of a set of sub-regions of the images, the respective sub-region is mapped to at least one of (i) a specific sub-unit of a predefined set of sub-units (e.g., gates) of the IC and (ii) a null result, thereby creating a representation of a detected layout of the IC as an arrangement of the sub-units. The representation can be used to verify that an as-fabricated layout is consistent with an as-designed layout, to detect unauthorized modifications of the IC structure.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 7, 2019
    Assignee: Trustees of Boston University
    Inventors: Ronen Adato, Ajay Joshi, M. Selim Unlu, Bennett B. Goldberg
  • Publication number: 20180350062
    Abstract: Optical verification testing of an IC includes obtaining images of the IC by, for each image: (i) illuminating the IC with excitation light, wherein the excitation light corresponds to a respective specific optical excitation of a predefined spectrum of optical excitations (e.g., wavelength spectrum); and (ii) detecting scattered light from the IC in response to the specific optical excitation. For each of a set of sub-regions of the images, the respective sub-region is mapped to at least one of (i) a specific sub-unit of a predefined set of sub-units (e.g., gates) of the IC and (ii) a null result, thereby creating a representation of a detected layout of the IC as an arrangement of the sub-units. The representation can be used to verify that an as-fabricated layout is consistent with an as-designed layout, to detect unauthorized modifications of the IC structure.
    Type: Application
    Filed: November 30, 2016
    Publication date: December 6, 2018
    Inventors: Ronen Adato, Ajay Joshi, M. Selim Unlu, Bennett B. Goldberg
  • Patent number: 9897542
    Abstract: The present invention relates to an infrared absorption spectroscopy apparatus including an infrared transparent substrate comprising a first and second surface, an array of plasmonic nano-antennas arranged on the first surface of the infrared transparent substrate, a flow cell for holding a liquid to allow spectroscopy measurements in a liquid environment, the array of plasmonic nano-antennas being located inside the flow cell, an optical source providing an incident light probe signal incident on at least a part of the array of plasmonic nano-antennas via the second surface of the infrared transparent substrate, and an optical element to collect reflected light signal reflected by said part of the array of plasmonic nano-antennas.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: February 20, 2018
    Assignee: ECOLE POLYTECHNIQUE DEDERALE DE LAUSANNE (EPFL)
    Inventors: Ronen Adato, Hatice Altug
  • Publication number: 20160018263
    Abstract: The present invention relates to an infrared absorption spectroscopy apparatus including an infrared transparent substrate comprising a first and second surface, an array of plasmonic nano-antennas arranged on the first surface of the infrared transparent substrate, a flow cell for holding a liquid to allow spectroscopy measurements in a liquid environment, the array of plasmonic nano-antennas being located inside the flow cell, an optical source providing an incident light probe signal incident on at least a part of the array of plasmonic nano-antennas via the second surface of the infrared transparent substrate, and an optical element to collect reflected light signal reflected by said part of the array of plasmonic nano-antennas.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 21, 2016
    Inventors: Ronen ADATO, Hatice ALTUG
  • Publication number: 20130148194
    Abstract: The present invention generally relates to nanoantenna arrays and methods of their fabrication. In particular, one aspect relates to nanoantenna arrays comprising nanostructures of predefined shapes in predefined patterns, which results in collective excitement of surface plasmons. In some embodiments the nanoantenna arrays can be used for spectroscopy and nanospectroscopy. Another aspects of the present invention relate to a method of high-throughput fabrication of nanoantenna arrays includes fabricating a reusable nanostencil for nanostensil lithography (NSL) which provides a mask to deposit materials onto virtually any support, such as flexible and thin-film stretchable supports. The nanostencil lithography methods enable high quality, high-throughput fabrication of nanostructures on conducting, non-conducting and magnetic supports. The nanostencil can be prepared by etching nanoapertures of predefined patterns into a waffer or ceramic membrane.
    Type: Application
    Filed: October 22, 2010
    Publication date: June 13, 2013
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Hatice Altug, Ahmet Ali Yanik, Shyamsunder Erramilli, Ronen Adato, Serap Aksu, Min Huang, Alp Artar