Patents by Inventor Rong-Feng Chang

Rong-Feng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200240400
    Abstract: A MEMS pump module includes a MEMS chip, at least one signal electrode, a plurality of MEMS pumps and a plurality of switch units. The MEMS chip comprises a chip body. The signal electrode is disposed on the chip body. Each of the MEMS pumps comprises a first electrode and a second electrode. The second electrode is electrically connected to the signal electrode. The switch units are electrically connected to the first electrodes of the MEMS pumps. A modulation voltage is received by the at least one signal electrode and then is transmitted to the second electrodes of the MEMS pumps. The on-off actions of MEMS pumps are controlled by the plurality of switch units.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 30, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Publication number: 20200224791
    Abstract: A micro fluid actuator includes a first substrate, a chamber layer, a vibration layer, a first metal layer, a piezoelectric actuation layer, a second metal layer, a second substrate, an inlet layer, a resonance layer and an aperture array plate. The first substrate includes a plurality of first outflow apertures and a plurality of second outflow apertures. The chamber layer includes a storage chamber. The second metal layer includes an upper electrode pad and a lower electrode pad. While driving power having different phase charges is provided to the upper electrode pad and the lower electrode pad to drive and control the vibration layer to displace in a reciprocating manner, the fluid is inhaled from the exterior through the inlet layer, converged to the storage chamber, compressed and pushes out the aperture array plate, and then is discharged out from the micro fluid actuator to achieve fluid transportation.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 16, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Hsuan-Kai Chen
  • Publication number: 20200182233
    Abstract: A MEMS pump module includes a microprocessor and a MEMS chip. The microprocessor outputs a constant voltage and a variable voltage. The MEMS chip includes a chip body, a plurality of MEMS pumps and at least one common electrode. The plurality of MEMS pumps are disposed on the chip body, and each MEMS pump includes a first electrode and a second electrode. The at least one common electrode is disposed on the chip body and electrically connected to the second electrodes of the plurality of MEMS pumps. The microprocessor is electrically connected to the first electrodes of the plurality of MEMS pumps and the at least one common electrode so as to transmit the constant voltage to the at least one common electrode and transmit the variable voltage to the first electrodes of the plurality of MEMS pumps.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 11, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Publication number: 20200166155
    Abstract: A micro fluid actuator includes an orifice layer, a flow channel layer, a substrate, a chamber layer, a vibration layer, a lower electrode layer, a piezoelectric actuation layer and an upper electrode layer, which are stacked sequentially. An outflow aperture, a plurality of first inflow apertures and a second inflow aperture are formed in the substrate by an etching process. A storage chamber is formed in the chamber layer by the etching process. An outflow opening and an inflow opening are formed in the orifice layer by the etching process. An outflow channel, an inflow channel and a plurality of columnar structures are formed in the flow channel layer by a lithography process. By providing driving power which have different phases to the upper electrode layer and the lower electrode layer, the vibration layer is driven to displace in a reciprocating manner, so as to achieve fluid transportation.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 28, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Hsuan-Kai Chen
  • Patent number: 10650557
    Abstract: A focus detection apparatus and a method thereof are provided. In the method, a medical image is obtained. Size of a target focus and a sliding window are determined, and side length of the sliding windows is at least twice the side length of the target focus. The medical image is scanned through the sliding window, and a stride which the sliding windows moves each time is not greater than the side length of the target focus. At least one area of interest is obtained based on the scan result. Then, the area of interest is identified based on machine learning techniques, and perform candidate aggregation and multiple size aggregation to determine at least one focus position. Accordingly, the computational time and the detection accuracy can be improved.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 12, 2020
    Assignee: TAIHAO MEDICAL INC.
    Inventors: Ruey-Feng Chang, Jen-Feng Hsu, Hong-Hao Chen, Rong-Tai Chen, Tsung-Chen Chiang, You-Wei Wang, Hsin-Hung Lai
  • Publication number: 20200139368
    Abstract: A micro channel structure includes a substrate, a supporting layer, a valve layer, a second insulation layer, a vibration layer and a bonding-pad layer. A flow channel is formed on the substrate. A conductive part and a movable part are formed on the supporting layer and the valve layer, respectively. A first chamber is formed at the interior of a base part and communicates to the hollow aperture. A supporting part is formed on the second insulation layer. A second chamber is formed at the interior of the supporting layer and communicates to the first chamber through the hollow aperture. A suspension part is formed on the vibration layer. By providing driving power sources having different phases to the bonding-pad layer, the suspension part moves upwardly and downwardly, and a relative displacement is generated between the movable part and the conductive part, to achieve fluid transportation.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 7, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Publication number: 20200140264
    Abstract: A manufacturing method of micro channel structure is disclosed and includes steps of: providing a substrate; depositing and etching to form a first insulation layer; depositing and etching to form a supporting layer; depositing and etching to form a valve layer; depositing and etching to form a second insulation layer; depositing and etching to form a vibration layer, a lower electrode layer and a piezoelectric actuating layer; providing a photoresist layer and depositing and etching to form a plurality of bonding pads; depositing and etching to from a mask layer; etching to form a first chamber; and etching to form a second chamber.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 7, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Publication number: 20200088185
    Abstract: A MEMS pump includes a first substrate, a first oxide layer, a second substrate, a second oxide layer, a third substrate and a piezoelectric element sequentially stacked to form the entire structure of the MEMS pump. The first substrate has a first thickness and at least one inlet aperture. The first oxide layer has at least one fluid inlet channel and a convergence chamber, wherein the fluid inlet channel communicates with the convergence chamber and the inlet aperture. The second substrate has a second thickness and a through hole, and the through hole is misaligned with the inlet aperture and communicates with the convergence chamber. The second oxide layer has a first chamber with a concave central portion. The third substrate has a third thickness and a plurality of gas flow channels, wherein the gas flow channels are misaligned with the through hole.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 19, 2020
    Applicant: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Patent number: 10580937
    Abstract: An optoelectronic device includes a semiconductor structure having a first side and a second side opposite to the first side, a first pad at the first side, a first finger connected to the electrode pad and having a first width, an insulating layer at the second side and comprising a first part under the first finger, the first part having a bottom surface with a second width larger than the first width and a side surface inclined to the bottom surface, and a contact layer covering the bottom surface and the side surface.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 3, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chun-Yu Lin, Yung-Fu Chang, Rong-Ren Lee, Kuo-Feng Huang, Cheng-Long Yeh, Yi-Ching Lee, Ming-Siang Huang, Ming-Tzung Liou
  • Patent number: 10405831
    Abstract: The invention provides a medical image playing system for playing a continuous image corresponding to a particular region of the human body. The system includes: a main display module for displaying the continuous image, a sub display system for displaying at least one information of image sections of the continuous image, and an instruction receiving module for receiving at least an external instruction. The instruction receiving module is arranged in the sub display module and combined with the at least one information, such that when the instruction receiving module receives the at least one external instruction, the at least one information corresponding to the external instruction is transmitted to the main display module to display the image corresponding to the at least one information.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: September 10, 2019
    Assignee: TAIHAO MEDICAL INC.
    Inventors: Rong-Tai Chen, Ruey-Feng Chang, Jie-Fan Chang, Heng Chen, Chung-Ming Lo, Hsin-Hung Lai
  • Publication number: 20190147629
    Abstract: A focus detection apparatus and a method thereof are provided. In the method, a medical image is obtained. Size of a target focus and a sliding window are determined, and side length of the sliding windows is at least twice the side length of the target focus. The medical image is scanned through the sliding window, and a stride which the sliding windows moves each time is not greater than the side length of the target focus. At least one area of interest is obtained based on the scan result. Then, the area of interest is identified based on machine learning techniques, and perform candidate aggregation and multiple size aggregation to determine at least one focus position. Accordingly, the computational time and the detection accuracy can be improved.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 16, 2019
    Applicant: TAIHAO MEDICAL INC.
    Inventors: Ruey-Feng Chang, Jen-Feng Hsu, Hong-Hao Chen, Rong-Tai Chen, Tsung-Chen Chiang, You-Wei Wang, Hsin-Hung Lai
  • Publication number: 20190148599
    Abstract: An optoelectronic device includes a semiconductor stack including a first surface and a second surface opposite to the first surface; a first contact layer on the first surface; and a second contact layer on the second surface. The second contact layer is not overlapped with the first contact layer in a vertical direction. The second contact layer includes a plurality of dots separating to each other and formed of semiconductor material.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Chun-Yu LIN, Yung-Fu CHANG, Rong-Ren LEE, Kuo-Feng HUANG, Cheng-Long YEH, Yi-Ching LEE, Ming-Siang HUANG, Ming-Tzung LIOU
  • Patent number: 7974272
    Abstract: A methods and apparatus for remote management of switching network nodes in a stack via in-band messaging are presented. Switching nodes in the stack default to reserved switching node identifiers and stacking ports default to a blocking state upon startup, restart, and reset. Each command frame received via a blocking state is forwarded to a command engine at each switching node and is acknowledged with the current switching node identifier. Each acknowledgement frame bearing the reserved network node identifier triggers configuration of the acknowledging switching node. Switching nodes and the management processor track interrupt state vectors regarding events. An interrupt acknowledgement process is employed to track raised interrupts. Configuration of switching node is performed via command frames transmitted by the management processor and destined to a command engine associated with the switching node.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: July 5, 2011
    Assignee: Conexant Systems, Inc.
    Inventors: Rong-Feng Chang, Mike Twu, Craig Barrack, Allen Yu
  • Patent number: 7835265
    Abstract: A high availability backplane architecture. The backplane system includes redundant node boards operatively communicating with redundant switch fabric boards. Uplink ports of the node boards are logically grouped into trunk ports at one end of the communication link with the switch fabric boards. The node boards and the switch fabric boards routinely perform link integrity checks when operating in a normal mode such that each can independently initiate failover to working ports when a link failure is detected. Link failure is detected either by sending a link heartbeat message after the link has had no traffic for a predetermined interval, or after receiving a predetermined consecutive number of invalid packets. Once the link failure is resolved, operation resumes in normal mode.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: November 16, 2010
    Assignee: Conexant Systems, Inc.
    Inventors: Linghsiao Wang, Rong-Feng Chang, Eric (Changhwa) Lin, James Ching-Shau Yik
  • Patent number: 7813263
    Abstract: A hardware-based failover scheme enabling rapid end-to-end recovery is provided. Hardware logic periodically generates, transmits, receives, and processes heartbeat packets, sent from one end of the communications network to another, and then returned back. If a communications network node or communications link failure is being experienced along the transport path, then the hardware logic rapidly swaps the affected traffic conveyed to a pre-established backup transport path, typically within microseconds. Advantages are derived from the rapid failover effected end-to-end which enables continued delivery of provisioned communications services improving the resiliency and/or availability of a communications network.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: October 12, 2010
    Assignee: Conexant Systems, Inc.
    Inventors: Rong-Feng Chang, Eric Lin, Craig Barrack
  • Patent number: 7760719
    Abstract: A packet switching node in a pipelined architecture processing packets received via an input port associated with the packet switching node performs a method, which includes: determining a packet frame type; selectively extracting packet header field values specific to a packet frame type, including packet addressing information; ascribing to the packet a preliminary action to be performed; searching packet switching information tracked by the packet switching node based on extracted packet addressing information; formulating a preliminary switch response for the packet; classifying the packet into a packet flow; modifying the preliminary switch response in accordance with one of the preliminary action, the packet flow into which the packet was classified, and a default port action corresponding to the input port; modifying the packet header in accordance with one of the preliminary action, the packet flow, and the default port action; and processing the packet.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: July 20, 2010
    Assignee: Conexant Systems, Inc.
    Inventors: James Yik, Rong-Feng Chang, Eric Lin, John Ta, Craig Barrack
  • Patent number: 7760726
    Abstract: A two-chip/single-die switch architecture and a method for accessing a DDR SDRAM memory store in a switching environment are presented. The two-chip/single-die architecture includes an internal memory storage block on the single-die, an external memory storage interface to a Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM), an external memory manager, and a packet data transfer engine effecting packet data transfers between an internal memory store and the external DDR SDRAM memory. The packet data transfer engine operates as an adaptation layer addressing issues related to employing appropriate: addressing schemes, granule sizes, memory transfer burst sizes, access timing, etc. The packet data transfer engine includes a minimal number of dual mode operational blocks such as: a queue manager, and adaptation receive and transmit blocks.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: July 20, 2010
    Assignee: Ikanos Communications, Inc.
    Inventors: Craig Barrack, Yeong Wang, Rong-Feng Chang
  • Publication number: 20090086733
    Abstract: A two-chip/single-die switch architecture and a method for accessing a DDR SDRAM memory store in a switching environment are presented. The two-chip/single-die architecture includes an internal memory storage block on the single-die, an external memory storage interface to a Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM), an external memory manager, and a packet data transfer engine effecting packet data transfers between an internal memory store and the external DDR SDRAM memory. The packet data transfer engine operates as an adaptation layer addressing issues related to employing appropriate: addressing schemes, granule sizes, memory transfer burst sizes, access timing, etc. The packet data transfer engine includes a minimal number of dual mode operational blocks such as: a queue manager, and adaptation receive and transmit blocks.
    Type: Application
    Filed: December 4, 2008
    Publication date: April 2, 2009
    Applicant: Conexant Systems, Inc.
    Inventors: Craig Barrack, Yeong Wang, Rong-Feng Chang
  • Patent number: 7486688
    Abstract: A two-chip/single-die switch architecture and a method for accessing a DDR SDRAM memory store in a switching environment are presented. The two-chip/single-die architecture includes an internal memory storage block on the single-die, an external memory storage interface to a Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM), an external memory manager, and a packet data transfer engine effecting packet data transfers between an internal memory store and the external DDR SDRAM memory. The packet data transfer engine operates as an adaptation layer addressing issues related to employing appropriate: addressing schemes, granule sizes, memory transfer burst sizes, access timing, etc. The packet data transfer engine includes a minimal number of dual mode operational blocks such as: a queue manager, and adaptation receive and transmit blocks.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: February 3, 2009
    Assignee: Conexant Systems, Inc.
    Inventors: Craig Barrack, Yeong Wang, Rong-Feng Chang
  • Publication number: 20090031044
    Abstract: Disclosed is an apparatus and method for storing and searching computer node addresses in a computer network system. In one embodiment, the apparatus comprises a frame forwarding device such as a switch. The switch includes two MAC address tables including a primary MAC address table and secondary MAC address table both for storing and searching MAC addresses. The primary table stores records that contain compressed values of MAC addresses. The records are contained in storage locations that are referenced using the compressed value of the MAC address as a search index. In order to account for searching collisions that may result from different MAC addresses compressing to the same value, each record in the primary address table is linked to a chain of records in the secondary table. The records in the secondary table store the full value of the MAC address. Each chain of records in the secondary address table contains MAC addresses the present invention.
    Type: Application
    Filed: April 22, 2008
    Publication date: January 29, 2009
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Craig Barrack, James Ching-Shau Yik, Rong-Feng Chang, Eric Lin