Patents by Inventor Rong Jin

Rong Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240032798
    Abstract: An illustrative optical measurement system includes a light source configured to emit light directed at a target. The optical measurement system further includes a photodetector configured to detect a photon of the light after the light is scattered by the target. The optical measurement system further includes a control circuit configured to receive a first input voltage that is a temperature-dependent voltage. The control circuit is further configured to receive a second input voltage that is a temperature-invariant voltage. The control circuit is further configured to output, based on a combination of the first input voltage and the second input voltage, a bias voltage for the photodetector, wherein the combination of the first and second input voltages is configured to cause the bias voltage to vary based on temperature.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Inventors: Rong Jin, Sebastian Sorgenfrei, Ryan Field, Bruno Do Valle, Jacob Dahle
  • Patent number: 11819311
    Abstract: An exemplary optical measurement system includes a light source configured to emit light directed at a target. The optical measurement system further includes a photodetector configured to detect a photon of the light after the light is scattered by the target. The optical measurement system further includes a control circuit configured to receive a first input voltage that is a temperature-dependent voltage. The control circuit is further configured to receive a second input voltage that is a temperature-invariant voltage. The control circuit is further configured to output, based on a combination of the first input voltage and the second input voltage, a bias voltage for the photodetector, wherein the combination of the first and second input voltages is configured to cause the bias voltage to vary based on temperature.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: November 21, 2023
    Assignee: HI LLC
    Inventors: Rong Jin, Sebastian Sorgenfrei, Ryan Field, Bruno Do Valle, Jacob Dahle
  • Patent number: 11813041
    Abstract: An exemplary photodetector system includes a plurality of photodetectors connected in parallel and a processor communicatively coupled to the plurality of photodetectors. The processor is configured to receive an accumulated output from the plurality of photodetectors. The accumulated output represents an accumulation of respective outputs from each of the plurality of photodetectors detecting photons during a predetermined measurement time period that occurs in response to a light pulse being directed toward a target within a body. The processor is further configured to determine, based on the accumulated output, a temporal distribution of photons detected by the plurality of photodetectors, and generate, based on the temporal distribution of photons, a histogram representing a light pulse response of the target within the body.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 14, 2023
    Assignee: HI LLC
    Inventors: Ryan Field, Bruno Do Valle, Jacob Dahle, Rong Jin, Sebastian Sorgenfrei
  • Patent number: 11735681
    Abstract: An illustrative system may include a component configured to be worn on a body of a user, the component comprising a time-to-digital converter (TDC) configured to: receive, during a predetermined event detection time window that commences in response to an application of a light pulse to a target within the body, a signal triggered by an event in which a photodetector detects a photon of the light pulse after the light pulse reflects from the target; and measure, based on the receiving the signal, a time interval between when the event occurred and an end of the predetermined event detection time window. The system may further include a processor configured to determine, based on the time interval and the predetermined event detection time window, an arrival time of the photon at the photodetector.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: August 22, 2023
    Assignee: HI LLC
    Inventors: Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Bruno Do Valle, Rong Jin
  • Publication number: 20230229878
    Abstract: An illustrative system may include a TDC configured to monitor for an occurrence of a photodetector output pulse during a measurement time window that is within and shorter in duration than a light pulse time period, the photodetector output pulse generated by a photodetector when the photodetector detects a photon from a light pulse having a light pulse time period; a PLL circuit for the TDC and having a PLL feedback period defined by a reference clock, the PLL circuit configured to: output a plurality of fine phase signals and output one or more signals representative of a plurality of feedback divider states during the PLL feedback period; and a precision timing circuit configured to adjust, based on one or more of the fine phase signals and/or the feedback divider states, a temporal position of the measurement time window within the light pulse time period.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 20, 2023
    Inventors: Ryan Field, Jacob Dahle, Rong Jin, Bruno Do Valle, Sebastian Sorgenfrei
  • Patent number: 11645483
    Abstract: An exemplary system includes a photodetector configured to generate a photodetector output pulse when the photodetector detects a photon from a light pulse having a light pulse time period, a TDC configured to monitor for the occurrence of the photodetector output pulse during a measurement time window that is within and shorter in duration than the light pulse time period, a PLL circuit for the TDC, and a precision timing circuit connected to the PLL circuit and configured to adjust, based on at least one signal generated within the PLL circuit, a temporal position of the measurement time window within the light pulse time period.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: May 9, 2023
    Assignee: HI LLC
    Inventors: Ryan Field, Jacob Dahle, Rong Jin, Bruno Do Valle, Sebastian Sorgenfrei
  • Patent number: 11607132
    Abstract: An exemplary system includes a photodetector configured to generate a plurality of photodetector output pulses over time as a plurality of light pulses are applied to and scattered by a target, a TPSF generation circuit configured to generate, based on the photodetector output pulses, a TPSF representative of a light pulse response of the target, and a control circuit configured to direct the TPSF generation circuit to selectively operate in different resolution modes.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 21, 2023
    Assignee: HI LLC
    Inventors: Bruno Do Valle, Ryan Field, Rong Jin, Jacob Dahle
  • Patent number: 11575382
    Abstract: An exemplary system includes a PLL circuit and a precision timing circuit connected to the PLL circuit. The PLL circuit has a PLL feedback period defined by a reference clock and includes a voltage controlled oscillator configured to lock to the reference clock and having a plurality of stages configured to output a plurality of fine phase signals each having a different phase, and a feedback divider configured to be clocked by a single fine phase signal included in the plurality of fine phase signals and have a plurality of feedback divider states during the PLL feedback period. The precision timing circuit is configured to generate a timing pulse and set, based on a first combination of one of the fine phase signals and one of the feedback divider states, a temporal position of the timing pulse within the PLL feedback period.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: February 7, 2023
    Assignee: HI LLC
    Inventors: Jacob Dahle, Bruno Do Valle, Rong Jin, Ryan Field, Sebastian Sorgenfrei
  • Patent number: 11538954
    Abstract: An exemplary wearable brain interface system includes a head-mountable component and a control system. The head-mountable component includes an array of photodetectors that includes a photodetector comprising a single-photon avalanche diode (SPAD) and a fast-gating circuit configured to arm and disarm the SPAD. The control system is for controlling a current drawn by the array of photodetectors.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: December 27, 2022
    Assignee: HI LLC
    Inventors: Bruno Do Valle, Ryan Field, Jacob Dahle, Rong Jin, Sebastian Sorgenfrei
  • Publication number: 20220316051
    Abstract: The mask includes: a mask body provided with a shielding part configured to shield an IC region between two adjacent panels sharing a base substrate; and the shielding part includes a reinforcing portion and a thinned portion, and the thinned portion has an accommodating recess with an opening facing the base substrate to be configured to accommodate a driving IC in the IC region.
    Type: Application
    Filed: October 22, 2021
    Publication date: October 6, 2022
    Inventors: Lirui YAN, Rong JIN, Chuan SHI, Jikun PENG, Duanming LI
  • Patent number: 11437538
    Abstract: An illustrative wearable brain interface system includes a headgear configured to be worn on a head of a user and a plurality of photodetector units configured to attach to the headgear, the photodetector units each housing a photodetector included in a plurality of photodetectors configured to be controlled by a master control unit to detect photons of light.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: September 6, 2022
    Assignee: HI LLC
    Inventors: Husam Katnani, Ryan Field, Bruno Do Valle, Rong Jin, Jacob Dahle
  • Patent number: 11410320
    Abstract: The present disclosure discloses an image processing method, apparatus, and a non-transitory computer readable medium. The method can includes: acquiring a three-dimensional (3D) model and original texture images of an object, wherein the original texture images are acquired by an imaging device; determining a mapping relationship between the 3D model and the original texture images of the object; determining, among the original texture images, a subset of texture images associated with a first perspective of the imaging device; splicing the subset of texture images into a spliced texture image corresponding to the first perspective; and mapping the spliced texture image to the 3D model according to the mapping relationship.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: August 9, 2022
    Assignee: Alibaba Group Holding Limited
    Inventors: Bin Wang, Jingming Yu, Xiaoduan Feng, Pan Pan, Rong Jin
  • Publication number: 20220246783
    Abstract: An illustrative system may include a component configured to be worn on a body of a user, the component comprising a time-to-digital converter (TDC) configured to: receive, during a predetermined event detection time window that commences in response to an application of a light pulse to a target within the body, a signal triggered by an event in which a photodetector detects a photon of the light pulse after the light pulse reflects from the target; and measure, based on the receiving the signal, a time interval between when the event occurred and an end of the predetermined event detection time window. The system may further include a processor configured to determine, based on the time interval and the predetermined event detection time window, an arrival time of the photon at the photodetector.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventors: Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Bruno Do Valle, Rong Jin
  • Patent number: 11398578
    Abstract: An illustrative wearable system includes a head-mountable component configured to be worn on a head of a user and a processor. The head-mountable component includes a time-to-digital converter (TDC) configured to receive, during a predetermined event detection time window that commences in response to an application of a light pulse to a target, a signal triggered by an event in which a photodetector detects a photon of the light pulse after the light pulse reflects from the target, the signal configured to enable a GRO of the TDC. The TDC is further configured to measure, using the GRO, a time interval between when the event occurred and an end of the predetermined event detection time window. The processor is configured to determine, based on the time interval and the predetermined event detection time window, an arrival time of the photon at the photodetector.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 26, 2022
    Assignee: HI LLC
    Inventors: Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Bruno Do Valle, Rong Jin
  • Publication number: 20220116048
    Abstract: An exemplary system includes a PLL circuit and a precision timing circuit connected to the PLL circuit. The PLL circuit has a PLL feedback period defined by a reference clock and includes a voltage controlled oscillator configured to lock to the reference clock and having a plurality of stages configured to output a plurality of fine phase signals each having a different phase, and a feedback divider configured to be clocked by a single fine phase signal included in the plurality of fine phase signals and have a plurality of feedback divider states during the PLL feedback period. The precision timing circuit is configured to generate a timing pulse and set, based on a first combination of one of the fine phase signals and one of the feedback divider states, a temporal position of the timing pulse within the PLL feedback period.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Jacob Dahle, Bruno Do Valle, Rong Jin, Ryan Field, Sebastian Sorgenfrei
  • Publication number: 20220050198
    Abstract: An illustrative optical measurement system includes a light source configured to emit a light pulse directed at a target. The optical measurement system further includes a plurality of photodetectors configured to operate in accordance with an input bias voltage. The optical measurement system further includes a control circuit configured to identify a photodetector subset included in the plurality of photodetectors and that detects, while the input bias voltage has a first value, photons of the light pulse after the light pulse is scattered by the target. The control circuit is further configured to determine, based on the identifying of the photodetector subset, an overvoltage associated with the photodetector subset. The control circuit is further configured to update, based on the overvoltage, the input bias voltage for the plurality of photodetectors to have a second value.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 17, 2022
    Inventors: Sebastian Sorgenfrei, Rong Jin, Ryan Field, Jacob Dahle, Bruno Do Valle
  • Patent number: 11245404
    Abstract: An exemplary system includes a PLL circuit and a precision timing circuit connected to the PLL circuit. The PLL circuit has a PLL feedback period defined by a reference clock and includes a voltage controlled oscillator configured to lock to the reference clock and having a plurality of stages configured to output a plurality of fine phase signals each having a different phase, and a feedback divider configured to be clocked by a single fine phase signal included in the plurality of fine phase signals and have a plurality of feedback divider states during the PLL feedback period. The precision timing circuit is configured to generate a timing pulse and set, based on a first combination of one of the fine phase signals and one of the feedback divider states, a temporal position of the timing pulse within the PLL feedback period.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: February 8, 2022
    Assignee: HI LLC
    Inventors: Jacob Dahle, Bruno Do Valle, Rong Jin, Ryan Field, Sebastian Sorgenfrei
  • Publication number: 20210290068
    Abstract: An exemplary optical measurement system includes a light source configured to emit light directed at a target. The optical measurement system further includes a photodetector configured to detect a photon of the light after the light is scattered by the target. The optical measurement system further includes a control circuit configured to receive a first input voltage that is a temperature-dependent voltage. The control circuit is further configured to receive a second input voltage that is a temperature-invariant voltage. The control circuit is further configured to output, based on a combination of the first input voltage and the second input voltage, a bias voltage for the photodetector, wherein the combination of the first and second input voltages is configured to cause the bias voltage to vary based on temperature.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Rong Jin, Sebastian Sorgenfrei, Ryan Field, Bruno Do Valle, Jacob Dahle
  • Publication number: 20210297084
    Abstract: An exemplary system includes a PLL circuit and a precision timing circuit connected to the PLL circuit. The PLL circuit has a PLL feedback period defined by a reference clock and includes a voltage controlled oscillator configured to lock to the reference clock and having a plurality of stages configured to output a plurality of fine phase signals each having a different phase, and a feedback divider configured to be clocked by a single fine phase signal included in the plurality of fine phase signals and have a plurality of feedback divider states during the PLL feedback period. The precision timing circuit is configured to generate a timing pulse and set, based on a first combination of one of the fine phase signals and one of the feedback divider states, a temporal position of the timing pulse within the PLL feedback period.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Jacob Dahle, Bruno Do Valle, Rong Jin, Ryan Field, Sebastian Sorgenfrei
  • Publication number: 20210294996
    Abstract: An exemplary system includes a photodetector configured to generate a photodetector output pulse when the photodetector detects a photon from a light pulse having a light pulse time period, a TDC configured to monitor for the occurrence of the photodetector output pulse during a measurement time window that is within and shorter in duration than the light pulse time period, a PLL circuit for the TDC, and a precision timing circuit connected to the PLL circuit and configured to adjust, based on at least one signal generated within the PLL circuit, a temporal position of the measurement time window within the light pulse time period.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Ryan Field, Jacob Dahle, Rong Jin, Bruno Do Valle, Sebastian Sorgenfrei