Patents by Inventor Rong-Jun Xie

Rong-Jun Xie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9677000
    Abstract: A fluorophor includes: ?-type sialon crystal which is expressed by a general formula: (Lix1, Eux2)(Si12?(m+n)Alm+n)(OnN16?n), wherein x1 is an amount of solid solution of Li in a sialon unit cell, and x2 is an amount of solid solution of Eu in the sialon unit cell, wherein the parameters x1, x2, m, and n satisfy: 1.6?x1?2.4 (1), 0.001?x2?0.4 (2), 1.8?m?2.4 (3), 0.8?n?1.2 (4), wherein the ?-type sialon crystal emits fluorescence with a peak in a wavelength region of from 550 nm to 575 nm upon irradiation of an excitation source.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: June 13, 2017
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Naoto Hirosaki, Rong-Jun Xie, Mamoru Mitomo
  • Publication number: 20150083966
    Abstract: A fluorophor includes: ?-type sialon crystal which is expressed by a general formula: (Lix1, Eux2) (Si12?(m+n)Alm+n)(OnN16?n), wherein x1 is an amount of solid solution of Li in a sialon unit cell, and x2 is an amount of solid solution of Eu in the sialon unit cell, wherein the parameters x1, x2, m, and n satisfy: 1.6?x1?2.4 (1), 0.001?x2?0.4 (2), 1.8?m?2.4 (3), 0.8?n?1.2 (4), wherein the ?-type sialon crystal emits fluorescence with a peak in a wavelength region of from 550 nm to 575 nm upon irradiation of an excitation source.
    Type: Application
    Filed: October 6, 2014
    Publication date: March 26, 2015
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Naoto HIROSAKI, Rong-Jun XIE, Mamoru MITOMO
  • Patent number: 8883039
    Abstract: A fluorophor which comprises as a main component, an ? type sialon crystal containing at least Li, A element (wherein A represents one or more elements selected from among Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, Tm and Yb), M element (wherein M represents one or more metal elements except Li and the A element), Si, Al, oxygen and nitrogen. The fluorophor has an a type sialon crystal structure which is represented by the general formulae: (Lix1, Ax2, Mx3)(Si12?(m+n)Alm+n)(OnN16?n) 1.2?x1?2.4 (1) 0.001?x2?0.4 (2) and 0?x3?1.0 (3), and has a luminescence peak at a wavelength in the range of 400 to 700 nm. The above phosphor is reduced in the lowering of brightness, and can be suitably used for a white LED and the like.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 11, 2014
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Rong-Jun Xie, Mamoru Mitomo
  • Patent number: 8057704
    Abstract: Disclosed are violet, blue, and green phosphors having excellent durability and high luminance. Specifically disclosed is a phosphor which contains a metal element M (M is at least one element selected from among Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm and Yb) for constituting a metal ion, which is solid-solubilized in an AlON crystal, an AlON solid solution crystal or an inorganic crystal having the same crystal structure as AlON. The phosphor is capable of emitting fluorescence having a peak in the wavelength range from 300 nm to 700 nm. Also disclosed is a method for producing such a phosphor. Further disclosed are an illuminating device and an image display each containing such a phosphor.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 15, 2011
    Assignee: National Institute for Materials Science
    Inventors: Rong-Jun Xie, Naoto Hirosaki
  • Patent number: 7910023
    Abstract: According to the invention, a highly crystalline ?-sialon is synthesized to emit highly intense light and a white LED showing an excellent color rendering characteristic is provided by shifting emitted light to the short wavelength side (blue shift). Such an ?-sialon is designed so as to be expressed by general formula (Lix, Cay, Euz) (Si12?(m+n)Alm+n) (OnN16?n) wherein the numerical ranges of x, y, z, m and n are respectively 0<x<2.0, 0<y<2.0, 0<z?0.5 (provided that 0.3?x+y+z?2.0), 0<m?4.0 and 0<n?3.0.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 22, 2011
    Assignee: National Institute for Materials Science
    Inventors: Rong-Jun Xie, Mamoru Mitomo, Naoto Hirosaki, Yoshinobu Yamamoto
  • Patent number: 7825580
    Abstract: A fluorophor comprising, as a main component, an ?-type sialon crystal which contains at least an A element (wherein A represents one or more elements selected from among Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, Tm and Yb), an M element (wherein M represents one or more elements selected from among Li, Na, Mg, Ca, Y, La, Gd and Lu), Si, Al, oxygen and nitrogen, and is represented by the general formula: (Mx, Ay)(Si12?(m+n)Alm+n)(OnN16?n) (1) m=?M×x+?A×y (2) 0.2?x?2.4 (3) 0.001?y?0.4 (4) and 0.5×m<n?4 (5). The fluorophor is reduced in the lowering of brightness, and is useful for a white color LED and the like.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 2, 2010
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Rong-Jun Xie, Mamoru Mitomo
  • Patent number: 7713443
    Abstract: An object of the present invention is to provide an inorganic phosphor, particularly, an oxynitride phosphor containing alkaline earths which has a higher luminance than that of conventional sialon phosphors activated with a rare earth, and is chemically stable. By baking a raw material mixture containing at least silicon nitride powder, M element containing inorganic substance, and A element containing inorganic substance at a temperature range of 1200° C. to 2200° C. in a nitrogen atmosphere, a phosphor comprising an inorganic composition containing at least M Element, A Element, silicon, oxygen, and nitrogen (wherein M Element is one or two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb, A Element is one or two or more elements selected from the group consisting of Mg, Ca, Sr, and Ba) and containing at least crystal having the same crystal structure as that of A2Si5N8 and A element-containing crystal is obtained.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: May 11, 2010
    Assignee: National Institute For Materials Science
    Inventors: Naoto Hirosaki, Rong-Jun Xie
  • Publication number: 20100072498
    Abstract: According to the invention, a highly crystalline ?-sialon is synthesized to emit highly intense light and a white LED showing an excellent color rendering characteristic is provided by shifting emitted light to the short wavelength side (blue shift). Such an ?-sialon is designed so as to be expressed by general formula (Lix, Cay, Euz) (Si12-(m+n)Alm+n) (OnN16-n) wherein the numerical ranges of x, y, z, m and n are respectively 0<x<2.0, 0<y<2.0, 0<z?0.5 (provided that 0.3?x+y+z?2.0), 0<m?4.0 and 0<n?3.0.
    Type: Application
    Filed: April 27, 2006
    Publication date: March 25, 2010
    Applicant: National Institute For Materials Science
    Inventors: Rong Jun Xie, Mamoru Mitomo, Naoto Hirosaki, Yoshinobu Yamamoto
  • Patent number: 7540977
    Abstract: The present invention aims at providing a chemically stabilized inorganic phosphor, among oxynitride phosphors including alkaline earths, which oxynitride phosphor emits orange or red light at longer wavelengths at higher luminance than conventional sialon phosphors activated by rare earths. The present invention further aims at providing a light emitting instrument based on the phosphor, for a lighting instrument excellent in color rendering property and for an image displaying apparatus excellent in durability. The solving means resides in provision of a fundamental phosphor comprising: a composition on a pseudo-ternary phase diagram including AO (A is one kind or two or more kinds of element(s) selected from Mg, Ca, Sr, and Ba; and AO is oxide of A), Si3N4, and SiO2 as end members, respectively, and satisfying all of the following conditions: in a composition formula, pAO-qSi3N4-rSiO2(p+q+r=1), 0.1?p?0.95??(1), 0.05?q?0.9??(2), and 0?r?0.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: June 2, 2009
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Rong-Jun Xie
  • Publication number: 20090121608
    Abstract: Disclosed are violet, blue, and green phosphors having excellent durability and high luminance. Specifically disclosed is a phosphor which contains a metal element M (M is at least one element selected from among Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm and Yb) for constituting a metal ion, which is solid-solubilized in an AlON crystal, an AlON solid solution crystal or an inorganic crystal having the same crystal structure as AlON. The phosphor is capable of emitting fluorescence having a peak in the wavelength range from 300 nm to 700 nm. Also disclosed is a method for producing such a phosphor. Further disclosed are an illuminating device and an image display each containing such a phosphor.
    Type: Application
    Filed: February 22, 2007
    Publication date: May 14, 2009
    Inventors: Rong-Jun Xie, Naoto Hirosaki
  • Publication number: 20090091237
    Abstract: A fluorophor which comprises as a main component, an ? type sialon crystal containing at least Li, A element (wherein A represents one or more elements selected from among Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, Tm and Yb), M element (wherein M represents one or more metal elements except Li and the A element), Si, Al, oxygen and nitrogen. The fluorophor has an a type sialon crystal structure which is represented by the general formulae: (Lix1, Ax2, Mx3)(Si12?(m+n)Alm+n)(OnN16?n) 1.2?x1?2.4 (1) 0.001?x2?0.4 (2) and 0?x3?1.0 (3), and has a luminescence peak at a wavelength in the range of 400 to 700 nm. The above phosphor is reduced in the lowering of brightness, and can be suitably used for a white LED and the like.
    Type: Application
    Filed: June 28, 2006
    Publication date: April 9, 2009
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Naoto Hirosaki, Rong-Jun Xie, Mamoru Mitomo
  • Publication number: 20090085465
    Abstract: A fluorophor comprising, as a main component, an ?-type sialon crystal which contains at least an A element (wherein A represents one or more elements selected from among Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, Tm and Yb), an M element (wherein M represents one or more elements selected from among Li, Na, Mg, Ca, Y, La, Gd and Lu), Si, Al, oxygen and nitrogen, and is represented by the general formulae: (Mx, Ay)(Si12?(m+n)Alm+n)(OnN16?n) (1) m=?M×x+?A×y (2) 0.2?x?2.4 (3) 0.001?y?0.4 (4) and 0.5×m<n?4 (5). The fluorophor is reduced in the lowering of brightness, and is useful for a white color LED and the like.
    Type: Application
    Filed: June 28, 2006
    Publication date: April 2, 2009
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Naoto Hirosaki, Rong-Jun Xie, Mamoru Mitomo
  • Publication number: 20080197321
    Abstract: An object of the present invention is to provide an inorganic phosphor, particularly, an oxynitride phosphor containing alkaline earths which has a higher luminance than that of conventional sialon phosphors activated with a rare earth, and is chemically stable. By baking a raw material mixture containing at least silicon nitride powder, M element containing inorganic substance, and A element containing inorganic substance at a temperature range of 1200° C. to 2200° C. in a nitrogen atmosphere, a phosphor comprising an inorganic composition containing at least M Element, A Element, silicon, oxygen, and nitrogen (wherein M Element is one or two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb, A Element is one or two or more elements selected from the group consisting of Mg, Ca, Sr, and Ba) and containing at least crystal having the same crystal structure as that of A2Si5N8 and A element-containing crystal is obtained.
    Type: Application
    Filed: January 25, 2006
    Publication date: August 21, 2008
    Applicant: TsNATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Naoto Hirosaki, Rong-Jun Xie
  • Publication number: 20080143246
    Abstract: The present invention aims at providing a chemically stabilized inorganic phosphor, among oxynitride phosphors including alkaline earths, which oxynitride phosphor emits orange or red light at longer wavelengths at higher luminance than conventional sialon phosphors activated by rare earths. The present invention further aims at providing a light emitting instrument based on the phosphor, for a lighting instrument excellent in color rendering property and for an image displaying apparatus excellent in durability. The solving means resides in provision of a fundamental phosphor comprising: a composition on a pseudo-ternary phase diagram including AO (A is one kind or two or more kinds of element(s) selected from Mg, Ca, Sr, and Ba; and AO is oxide of A), Si3N4, and SiO2 as end members, respectively, and satisfying all of the following conditions: in a composition formula, pAO-qSi3N4-rSiO2 (p+q+r=1), 0.1?p?0.95, ??(1) 0.05?q?0.9, and ??(2) 0?r?0.
    Type: Application
    Filed: September 16, 2005
    Publication date: June 19, 2008
    Applicant: NATIONAL INSTITUTION FOR MATERIALS SCIENCE
    Inventors: Naoto Hirosaki, Rong-Jun Xie