Patents by Inventor Rong Xiang

Rong Xiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040192631
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a DNA construct operably encoding a cancer-associated Inhibitor of Apoptosis-family protein and an immunoactive gene product, such as a cytokine or a ligand for a natural killer cell surface receptor, in a pharmaceutically acceptable carrier. A preferred cytokine is CCL21. Preferred ligands for a natural killer cell surface receptor include human MICA, human MICB, human ULBP1, human ULBP2, and human ULBP3. The cancer-associated Inhibitor of Apoptosis (IAP)-family protein is preferably a survivin protein or livin protein. Method of inhibiting tumor growth by administering the vaccine of the invention to a mammal is also described.
    Type: Application
    Filed: March 24, 2004
    Publication date: September 30, 2004
    Inventors: Rong Xiang, He Zhou, Ralph A. Reisfeld
  • Patent number: 6687867
    Abstract: A method of generating a test bit pattern for a memory device is provided. The method includes, for example, the steps of loading a data register with an initial test bit pattern and storing the initial test bit pattern in the memory device. The method also includes the steps of generating a additional test bit patterns by shifting the initial test bit pattern by a predetermined number of bits and storing the additional test bit pattern in the memory device. The step of shifting the initial test bit pattern includes, for example, the step of pushing a one or two-bit pattern into the initial test bit pattern. Subsequent successive test bit patterns are similarly generated by pushing a one or two-bit pattern into the previously generated test bit patterns. Hence, the number of bits loaded into the data register is greatly reduced and the required test bit pattern still generated.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: February 3, 2004
    Assignee: Xilinx, Inc.
    Inventor: Rong-Xiang Ni
  • Publication number: 20030185802
    Abstract: A DNA vaccine effective for inhibiting endothelial cell proliferation comprises a DNA construct operably encoding a vascular endothelial growth factor (VEGF) receptor protein. This invention provides DNA vaccines that encode VEGF receptor-2 (KDR, SEQ ID NO: 2), VEGF receptor-1 (Flt-1, (SEQ ID NO: 4), or Flk-1 (the murine homolog of KDR, SEQ ID NO: 6), DNA sequences SEQ ID NOS: 1, 3, and 5 respectively, as well as methods of using such a DNA vaccine to inhibit vascular endothelial cell proliferation in the tumor micro-environment. Anti-angiogenesis and subsequent decrease in tumor growth and dissemination is achieved.
    Type: Application
    Filed: March 2, 2002
    Publication date: October 2, 2003
    Inventors: Ralph A. Reisfeld, Andreas G. Niethammer, Rong Xiang
  • Publication number: 20030176377
    Abstract: A DNA vaccine effective for eliciting an immune response against cells that present a carcinoembryonic antigen (CEA) comprises a DNA operably encoding a CEA and a DNA operably encoding a CD40 ligand, SEQ ID NO:1 and SEQ ID NO: 2, respectively, or its homotrimer, CD40LT. The DNA vaccine can be incorporated in a delivery vector such as an attenuated live bacterium or virus, or a liposome carrier. In a method embodiment, the DNA vaccine is administered orally to a mammal, such as a human, to elicit an immune response against CEA presenting cells such as colon cancer cells. A preferred method embodiment includes the additional step of treating the mammal with recombinant antibody fusion protein huKS1/4-IL2 to enhance the immune response effectiveness of the vaccine.
    Type: Application
    Filed: March 2, 2002
    Publication date: September 18, 2003
    Inventors: Rong Xiang, Ralph A. Reisfeld
  • Publication number: 20020069383
    Abstract: A method of generating a test bit pattern for a memory device is provided. The method includes, for example, the steps of loading a data register with an initial test bit pattern and storing the initial test bit pattern in the memory device. The method also includes the steps of generating a additional test bit patterns by shifting the initial test bit pattern by a predetermined number of bits and storing the additional test bit pattern in the memory device. The step of shifting the initial test bit pattern includes, for example, the step of pushing a one or two-bit pattern into the initial test bit pattern. Subsequent successive test bit patterns are similarly generated by pushing a one or two-bit pattern into the previously generated test bit patterns. Hence, the number of bits loaded into the data register is greatly reduced and the required test bit pattern still generated.
    Type: Application
    Filed: December 5, 2000
    Publication date: June 6, 2002
    Inventor: Rong-Xiang Ni