Patents by Inventor Rongtian Zhang

Rongtian Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9768161
    Abstract: A capacitor includes a semiconductor substrate. The capacitor also includes a first terminal having a fin disposed on a surface of the semiconductor substrate. The capacitor further includes a dielectric layer disposed onto the fin. The capacitor still further includes a second terminal having a FinFET compatible high-K metal gate disposed proximate and adjacent to the fin.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: September 19, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Rongtian Zhang, Lew Chua-Eoan, Shiqun Gu
  • Patent number: 9508607
    Abstract: Some implementations provide a package that includes a first die and a second die adjacent to the first die. The second die is capable of heating the first die. The package also includes a leakage sensor configured to measure a leakage current of the first die. The package also includes a thermal management unit coupled to the leakage sensor. The thermal management unit configured to control a temperature of the first die based on the leakage current of the first die.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: November 29, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Lew G. Chua-Eoan, Rongtian Zhang
  • Patent number: 9276199
    Abstract: Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: March 1, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Rongtian Zhang, Vidhya Ramachandran, Dong Wook Kim
  • Publication number: 20160013180
    Abstract: A capacitor includes a semiconductor substrate. The capacitor also includes a first terminal having a fin disposed on a surface of the semiconductor substrate. The capacitor further includes a dielectric layer disposed onto the fin. The capacitor still further includes a second terminal having a FinFET compatible high-K metal gate disposed proximate and adjacent to the fin.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 14, 2016
    Inventors: Rongtian Zhang, Lew Chua-Eoan, Shiqun Gu
  • Patent number: 9202705
    Abstract: An integrated circuit (IC) module with a lead frame micro-needle for a medical device, and methods of forming the IC module are described. The methods include forming a lead frame blank including a micro-needle integrally formed therein. The micro-needle may be bent beyond an initial lower side of the lead frame blank. The initial lower side may be joined with a protection layer such that the bent micro-needle is embedded in the protection layer, which may be removably attached to the initial lower side and the bent micro-needle. An IC component may be affixed to an upper side of the lead frame blank. The IC component and an upper surface of a core of the lead frame blank may be encapsulated with a molding compound forming a packaging of the IC module. Removal of the protection layer may expose the bent micro-needle projecting away from the packaging.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: December 1, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Kenneth Kaskoun, Rongtian Zhang, Matthew Michael Nowak, Shiqun Gu
  • Patent number: 9142548
    Abstract: A capacitor includes a semiconductor substrate. The capacitor also includes a first terminal having a fin disposed on a surface of the semiconductor substrate. The capacitor further includes a dielectric layer disposed onto the fin. The capacitor still further includes a second terminal having a FinFET compatible high-K metal gate disposed proximate and adjacent to the fin.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: September 22, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Rongtian Zhang, Lew G. Chua-Eoan, Shiqun Gu
  • Patent number: 9138191
    Abstract: An integrated circuit (IC) module with a lead frame micro-needle for a medical device, and methods of forming the IC module are described. The methods include forming a lead frame blank including a micro-needle integrally formed therein. The micro-needle may be bent beyond an initial lower side of the lead frame blank. The initial lower side may be joined with a protection layer such that the bent micro-needle is embedded in the protection layer, which may be removably attached to the initial lower side and the bent micro-needle. An IC component may be affixed to an upper side of the lead frame blank. The IC component and an upper surface of a core of the lead frame blank may be encapsulated with a molding compound forming a packaging of the IC module. Removal of the protection layer may expose the bent micro-needle projecting away from the packaging.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: September 22, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Kenneth Kaskoun, Rongtian Zhang, Matthew Michael Nowak, Shiqun Gu
  • Patent number: 9136382
    Abstract: A method for fabricating a native device is presented. The method includes forming a gate structure over a substrate starting at an outer edge of an inner marker region, where the gate structure extends in a longitudinal direction, and performing MDD implants, where each implant is performed using a different orientation with respect to the gate structure, performing pocket implants, where each implant is performed using a different orientation with respect to the gate structure, and concentrations of the pocket implants vary based upon the orientations. A transistor fabricated as a native device, is presented, which includes an inner marker region, an active outer region which surrounds the inner marker region, a gate structure coupled to the inner marker region, and first and second source/drain implants located within the active outer region and interposed between the first source/drain implant and the second source/drain implant.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: September 15, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Shashank S. Ekbote, Rongtian Zhang
  • Publication number: 20150048465
    Abstract: Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
    Type: Application
    Filed: September 26, 2014
    Publication date: February 19, 2015
    Inventors: Shiqun Gu, Rongtian Zhang, Vidhya Ramachandran, Dong Wook Kim
  • Patent number: 8952504
    Abstract: Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: February 10, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Rongtian Zhang, Vidhya Ramachandran, Dong Wook Kim
  • Patent number: 8884408
    Abstract: Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: November 11, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Rongtian Zhang, Vidhya Ramachandran, Dong Wook Kim
  • Publication number: 20140035067
    Abstract: A method for fabricating a native device is presented. The method includes forming a gate structure over a substrate starting at an outer edge of an inner marker region, where the gate structure extends in a longitudinal direction, and performing MDD implants, where each implant is performed using a different orientation with respect to the gate structure, performing pocket implants, where each implant is performed using a different orientation with respect to the gate structure, and concentrations of the pocket implants vary based upon the orientations. A transistor fabricated as a native device, is presented, which includes an inner marker region, an active outer region which surrounds the inner marker region, a gate structure coupled to the inner marker region, and first and second source/drain implants located within the active outer region and interposed between the first source/drain implant and the second source/drain implant.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 6, 2014
    Applicant: Qualcomm Incorporated
    Inventors: Shashank S. Ekbote, Rongtian Zhang
  • Patent number: 8541269
    Abstract: A method for fabricating a native device is presented. The method includes forming a gate structure over a substrate starting at an outer edge of an inner marker region, where the gate structure extends in a longitudinal direction, and performing MDD implants, where each implant is performed using a different orientation with respect to the gate structure, performing pocket implants, where each implant is performed using a different orientation with respect to the gate structure, and concentrations of the pocket implants vary based upon the orientations. A transistor fabricated as a native device, is presented, which includes an inner marker region, an active outer region which surrounds the inner marker region, a gate structure coupled to the inner marker region, and first and second source/drain implants located within the active outer region and interposed between the first source/drain implant and the second source/drain implant.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: September 24, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Shashank S. Ekbote, Rongtian Zhang
  • Publication number: 20110266635
    Abstract: A method for fabricating a native device is presented. The method includes forming a gate structure over a substrate starting at an outer edge of an inner marker region, where the gate structure extends in a longitudinal direction, and performing MDD implants, where each implant is performed using a different orientation with respect to the gate structure, performing pocket implants, where each implant is performed using a different orientation with respect to the gate structure, and concentrations of the pocket implants vary based upon the orientations. A transistor fabricated as a native device, is presented, which includes an inner marker region, an active outer region which surrounds the inner marker region, a gate structure coupled to the inner marker region, and first and second source/drain implants located within the active outer region and interposed between the first source/drain implant and the second source/drain implant.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Shashank S. Ekbote, Rongtian Zhang