Patents by Inventor Roni Dadon
Roni Dadon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8885985Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: GrantFiled: August 29, 2012Date of Patent: November 11, 2014Assignee: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20120321298Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: ApplicationFiled: August 29, 2012Publication date: December 20, 2012Applicant: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Patent number: 8260092Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: GrantFiled: February 21, 2011Date of Patent: September 4, 2012Assignee: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Patent number: 8229254Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: GrantFiled: November 14, 2008Date of Patent: July 24, 2012Assignee: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Patent number: 8195012Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: GrantFiled: November 14, 2008Date of Patent: June 5, 2012Assignee: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20110142445Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: ApplicationFiled: February 21, 2011Publication date: June 16, 2011Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Patent number: 7907798Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: GrantFiled: November 17, 2008Date of Patent: March 15, 2011Assignee: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20090080883Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: ApplicationFiled: November 17, 2008Publication date: March 26, 2009Applicant: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20090073561Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: ApplicationFiled: November 14, 2008Publication date: March 19, 2009Applicant: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20090073560Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: ApplicationFiled: November 14, 2008Publication date: March 19, 2009Applicant: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Patent number: 7454092Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: GrantFiled: October 24, 2006Date of Patent: November 18, 2008Assignee: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20080095487Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.Type: ApplicationFiled: October 24, 2006Publication date: April 24, 2008Applicant: Kailight Photonics, Inc.Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
-
Publication number: 20080095538Abstract: Optical transponders with reduced sensitivity to PMD and CD are described. In one embodiment, an optical transponder comprises a differential group delay (DGD) mitigator integrated within the transponder and optically coupled to an optical input port of the optical transponder, an optical receiver integrated within the optical transponder and optically coupled to the DGD mitigator and to an electrical output port of the transponder, and a multi-level transmitter integrated within the optical transponder, where the multi-level transmitter is electrically coupled to an electrical input port and optically coupled to an optical output port of the transponder.Type: ApplicationFiled: October 24, 2006Publication date: April 24, 2008Applicant: Kailight Photonics, Inc.Inventors: Er'el Granot, Roni Dadon, Motti Caspi, Reuven Zaibel, Shai Tzadok, Shalva Ben-Ezra, Yaniv Sadka, Arieh Sher, Sagie Tsadka