Patents by Inventor Ronny Pfuetzner

Ronny Pfuetzner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150076559
    Abstract: Integrated circuits with strained silicon and methods for fabricating such integrated circuits are provided. An integrated circuit includes a stack with a surface layer, an intermediate layer, and a base layer, where the surface layer overlies the intermediate layer, and the intermediate layer overlies the base layer. The surface layer and the base layer include strained silicon, where the silicon atoms are stretched beyond a normal crystalline silicon interatomic distance. The intermediate layer includes crystalline silicon germanium.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Kai Frohberg, Torsten Huisinga, Egon Ronny Pfuetzner
  • Patent number: 8969170
    Abstract: A method comprises forming a first layer of an electrically insulating material over a semiconductor structure. A recess is formed in the first layer of electrically insulating material. A capacitor layer stack is deposited over the first layer of electrically insulating material. The capacitor layer stack includes one or more bottom electrode layers, a dielectric layer and a top electrode layer, wherein a first portion of the capacitor layer stack is arranged in the recess and a second portion of the capacitor layer stack is arranged over a portion of the first layer of electrically insulating material adjacent the recess. A chemical mechanical polishing process is performed. The chemical mechanical polishing process removes the second portion of the capacitor layer stack, wherein the first portion of the capacitor layer stack is not removed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 3, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Maik Liebau, Ronny Pfuetzner
  • Publication number: 20140273396
    Abstract: A method comprises forming a first layer of an electrically insulating material over a semiconductor structure. A recess is formed in the first layer of electrically insulating material. A capacitor layer stack is deposited over the first layer of electrically insulating material. The capacitor layer stack includes one or more bottom electrode layers, a dielectric layer and a top electrode layer, wherein a first portion of the capacitor layer stack is arranged in the recess and a second portion of the capacitor layer stack is arranged over a portion of the first layer of electrically insulating material adjacent the recess. A chemical mechanical polishing process is performed. The chemical mechanical polishing process removes the second portion of the capacitor layer stack, wherein the first portion of the capacitor layer stack is not removed.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Maik Liebau, Ronny Pfuetzner
  • Publication number: 20140264877
    Abstract: A semiconductor device includes a first metallization layer positioned above a substrate of the semiconductor device, the metallization layer including a dielectric material and a copper-containing metal region embedded in the dielectric material. The semiconductor device also includes a conductive barrier layer positioned along substantially an entirety of an interface between the copper-containing metal region and the dielectric material, the conductive barrier layer including a copper/silicon compound that is in direct contact with the dielectric material along substantially the entirety of the interface.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Ronny Pfuetzner, Jens Heinrich
  • Publication number: 20140197544
    Abstract: Upon forming a complex metallization system, the parasitic capacitance between metal lines of adjacent metallization layers may be reduced by providing a patterned etch stop material. In this manner, the patterning process for forming the via openings may be controlled in a highly reliable manner, while, on the other hand, the resulting overall dielectric constant of the metallization system may be reduced, thereby also significantly reducing the parasitic capacitance between stacked metal lines.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Inventors: Jens Heinrich, Torsten Huisinga, Ralf Richter, Ronny Pfuetzner
  • Patent number: 8778795
    Abstract: In sophisticated metallization systems of semiconductor devices, a sensitive core metal, such as copper, may be efficiently confined by a conductive barrier material comprising a copper/silicon compound, such as a copper silicide, which may provide superior electromigration behavior and higher electrical conductivity compared to conventionally used tantalum/tantalum nitride barrier systems.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: July 15, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ronny Pfuetzner, Jens Heinrich
  • Patent number: 8772154
    Abstract: Embodiments of a method for fabricating integrated circuits are provided, as are embodiments of an integrated circuit. In one embodiment, the method includes the steps of depositing an interlayer dielectric (“ILD”) layer over a semiconductor device, depositing a barrier polish stop layer over the ILD layer, and patterning at least the barrier polish stop layer and the ILD layer to create a plurality of etch features therein. Copper is plated over the barrier polish stop layer and into the plurality of etch features to produce a copper overburden overlying the barrier polish stop layer and a plurality of conductive interconnect features in the ILD layer and barrier polish stop layer. The integrated circuit is polished to remove the copper overburden and expose the barrier polish stop layer.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 8, 2014
    Assignee: GlobalFoundries, Inc.
    Inventors: Egon Ronny Pfützner, Carsten Peters, Jens Heinrich
  • Patent number: 8685807
    Abstract: The method described herein involves a method of forming metal gates and metal contacts in a common fill process. The method may involve forming a gate structure comprising a sacrificial gate electrode material, forming at least one conductive contact opening in a layer of insulating material positioned adjacent the gate structure, removing the sacrificial gate electrode material to thereby define a gate electrode opening, and performing a common deposition process to fill the conductive contact opening and the gate electrode opening with a conductive fill material.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: April 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ronny Pfuetzner, Ralf Richter, Jens Heinrich
  • Patent number: 8673770
    Abstract: One method disclosed herein includes the steps of forming a ULK material layer, forming a hard mask layer above the ULK material layer, forming a patterned photoresist layer above the hard mask layer, performing at least one etching process to define an opening in at least the ULK material layer for a conductive structure to be positioned in at least the ULK material layer, forming a fill material such that it overfills the opening, performing a process operation to remove the patterned photoresist layer and to remove the fill material positioned outside of the opening, removing the fill material from within the opening and, after removing the fill material from within the opening, forming a conductive structure in the opening.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Torsten Huisinga, Jens Heinrich, Ronny Pfuetzner
  • Publication number: 20130102147
    Abstract: One method disclosed herein includes the steps of forming a ULK material layer, forming a hard mask layer above the ULK material layer, forming a patterned photoresist layer above the hard mask layer, performing at least one etching process to define an opening in at least the ULK material layer for a conductive structure to be positioned in at least the ULK material layer, forming a fill material such that it overfills the opening, performing a process operation to remove the patterned photoresist layer and to remove the fill material positioned outside of the opening, removing the fill material from within the opening and, after removing the fill material from within the opening, forming a conductive structure in the opening.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Torsten Huisinga, Jens Heinrich, Ronny Pfuetzner
  • Patent number: 8383510
    Abstract: Upon forming a complex metallization system, the parasitic capacitance between metal lines of adjacent metallization layers may be reduced by providing a patterned etch stop material. In this manner, the patterning process for forming the via openings may be controlled in a highly reliable manner, while, on the other hand, the resulting overall dielectric constant of the metallization system may be reduced, thereby also significantly reducing the parasitic capacitance between stacked metal lines.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 26, 2013
    Assignee: Globalfoundries Inc.
    Inventors: Jens Heinrich, Torsten Huisinga, Ralf Richter, Ronny Pfuetzner
  • Publication number: 20120319285
    Abstract: Embodiments of a method for fabricating integrated circuits are provided, as are embodiments of an integrated circuit. In one embodiment, the method includes the steps of depositing an interlayer dielectric (“ILD”) layer over a semiconductor device, depositing a barrier polish stop layer over the ILD layer, and patterning at least the barrier polish stop layer and the ILD layer to create a plurality of etch features therein. Copper is plated over the barrier polish stop layer and into the plurality of etch features to produce a copper overburden overlying the barrier polish stop layer and a plurality of conductive interconnect features in the ILD layer and barrier polish stop layer. The integrated circuit is polished to remove the copper overburden and expose the barrier polish stop layer.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Egon Ronny PFÜTZNER, Carsten PETERS, Jens HEINRICH
  • Publication number: 20120282765
    Abstract: The method described herein involves a method of forming metal gates and metal contacts in a common fill process. The method may involve forming a gate structure comprising a sacrificial gate electrode material, forming at least one conductive contact opening in a layer of insulating material positioned adjacent the gate structure, removing the sacrificial gate electrode material to thereby define a gate electrode opening, and performing a common deposition process to fill the conductive contact opening and the gate electrode opening with a conductive fill material.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ronny Pfützner, Ralf Richter, Jens Heinrich
  • Publication number: 20120153405
    Abstract: In sophisticated semiconductor devices, at least a portion of the interlayer dielectric material of the contact level may be provided in the form of a low-k dielectric material which may, in some illustrative embodiments, be accomplished on the basis of a replacement gate approach. Hence, superior electrical performance, for instance with respect to the parasitic capacitance, may be accomplished.
    Type: Application
    Filed: August 2, 2011
    Publication date: June 21, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Jens Heinrich, Kai Frohberg, Torsten Huisinga, Ronny Pfuetzner
  • Publication number: 20120153480
    Abstract: In sophisticated metallization systems of semiconductor devices, a sensitive core metal, such as copper, may be efficiently confined by a conductive barrier material comprising a copper/silicon compound, such as a copper silicide, which may provide superior electromigration behavior and higher electrical conductivity compared to conventionally used tantalum/tantalum nitride barrier systems.
    Type: Application
    Filed: July 27, 2011
    Publication date: June 21, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ronny Pfuetzner, Jens Heinrich