Patents by Inventor Ronny Soetarman

Ronny Soetarman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210088768
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Application
    Filed: December 2, 2020
    Publication date: March 25, 2021
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Publication number: 20210080710
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Application
    Filed: December 2, 2020
    Publication date: March 18, 2021
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Patent number: 10884228
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 5, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Patent number: 10769769
    Abstract: A dual mode inspector includes an optical inspector configured to detect a defect located at a first location on a sample, a microscope configured to capture an image of the defect at the first location on the sample, and a platform that is configured to support the sample. The sample is not removed from the platform between the detecting of the defect located at the first location on the sample and the capturing of the image of the defect at the first location on the sample. The dual mode optical inspector also includes a controller that causes the optical inspector to detect the defect located at the first location on the sample and causes the microscope to capture the image of the defect at the first location on the sample. The dual mode inspector also performs scanning lens distortion correction to improve the capturing of defect images.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 8, 2020
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen, James Jianguo Xu
  • Patent number: 10475173
    Abstract: A dual mode inspector includes an optical inspector configured to detect a defect located at a first location on a sample, a microscope configured to capture an image of the defect at the first location on the sample, and a platform that is configured to support the sample. The sample is not removed from the platform between the detecting of the defect located at the first location on the sample and the capturing of the image of the defect at the first location on the sample. The dual mode optical inspector also includes a controller that causes the optical inspector to detect the defect located at the first location on the sample and causes the microscope to capture the image of the defect at the first location on the sample. The dual mode inspector also performs scanning lens distortion correction to improve the capturing of defect images.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: November 12, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen, James Jianguo Xu
  • Patent number: 10359613
    Abstract: A method of generating 3D information includes: varying the distance between the sample and an objective lens of the optical microscope at pre-determined steps, capturing an image at each pre-determined step; determining a characteristic value of each pixel in each captured image; determining, for each captured image, the greatest characteristic value across all pixels in the captured image; comparing the greatest characteristic value for each captured image to determine if a surface of the sample is present at each pre-determined step; determining a first captured image that is focused on a first surface of the sample based on the characteristic value of each pixel in each captured image; determining a second captured image that is focused on a second surface of the sample based on the characteristic value of each pixel in each captured image; and determining a first distance between the first surface and the second surface.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 23, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: James Jianguo Xu, Ronny Soetarman, Budi Hartono
  • Patent number: 10338009
    Abstract: A method and apparatus to measure specular reflection intensity, specular reflection angle, near specular scattered radiation, and large angle scattered radiation and determine the location and type of defect present in a first and a second transparent solid that have abutting surfaces. The types of defects include a top surface particle, an interface particle, a bottom surface particle, an interface bubble, a top surface pit, and a stain. The four measurements are conducted at multiple locations along the surface of the transparent solid and the measured information is stored in a memory device. The difference between an event peak and a local average of measurements for each type of measurement is used to detect changes in the measurements. Information stored in the memory device is processed to generate a work piece defect mapping indicating the type of defect and the defect location of each defect found.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: July 2, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Steven W. Meeks, Ronny Soetarman
  • Patent number: 10209501
    Abstract: A three-dimensional (3D) microscope for patterned substrate measurement can include an objective lens, a reflected illuminator, a transmitted illuminator, a focusing adjustment device, an optical sensor, and a processor. The focusing adjustment device can automatically adjust the objective lens focus at a plurality of Z steps. The optical sensor can be capable of acquiring images at each of these Z steps. The processor can control the reflected illuminator, the transmitted illuminator, the focusing adjustment device, and the optical sensor. The processor can be configured to capture first and second images at multiple Z steps, the first image with the pattern using the reflected illuminator and the second image without the pattern using one of the reflected illuminator and the transmitted illuminator.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: February 19, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Zhen Hou, James Jianguo Xu, Ken Kinsun Lee, James Nelson Stainton, Hung Phi Nguyen, Rusmin Kudinar, Ronny Soetarman
  • Patent number: 10168524
    Abstract: A method of generating 3D information including: varying the distance between the sample and an objective lens of the optical microscope at pre-determined steps; capturing an image at each pre-determined step; determining a characteristic value of each pixel in each captured image; determining, for each captured image, the greatest characteristic value across a first portion of pixels in the captured image; comparing the greatest characteristic value for each captured image to determine if a surface of the sample is present at each pre-determined step; determining a first captured image that is focused on an apex of a bump of the sample; determining a second captured image that is focused on a first surface of the sample based on the characteristic value of each pixel in each captured image; and determining a first distance between the apex of the bump and the first surface.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: January 1, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Ronny Soetarman, James Jianguo Xu
  • Patent number: 10157457
    Abstract: A method of generating 3D information of a sample using an optical microscope includes: varying the distance between the sample and an objective lens of the optical microscope at pre-determined steps, capturing an image at each pre-determined step, determining a characteristic value of each pixel in each captured image, determining a first captured image that is focused on a first surface of the sample based on the characteristic value of each pixel in each captured image, and determining a measurement of an opening in the first surface of the sample based on the first captured image. The first surface of the sample and the second surface of the sample are within a field of view of each of the captured images. The first captured image includes a pattern overlay. In another example, the opening measurement is determined using a second captured image without a pattern overlay.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 18, 2018
    Assignee: KLA-TENCOR CORPORATION
    Inventors: James Jianguo Xu, Ronny Soetarman, Ken Kinsun Lee, Nitigya Kathuria
  • Patent number: 10094787
    Abstract: An optical inspector includes a time varying beam reflector, a radiating source that irradiates the time varying beam reflector, a telecentric scan lens configured to direct the radiation reflected by the time varying beam reflector onto a first surface of a transparent sample, a first detector that receives at least a portion of top surface specular reflection, a second detector that receives at least a portion of the bottom surface specular reflection. A turning mirror may also be included. The turning mirror is a switchable mirror that can be adjusted to a first position where the turning mirror reflects the top and bottom surface specular reflection, and can be adjusted to a second position where the turning mirror does not reflect the top or the bottom surface specular reflection. A first and second polarizing element may also be included to detect additional types of defects on either surface.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: October 9, 2018
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen
  • Patent number: 10048480
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 14, 2018
    Assignee: Zeta Instruments, Inc.
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Patent number: 9921169
    Abstract: A method for detecting defects includes directing a scanning beam to a location on a surface of a transparent sample, measuring top and bottom surface specular reflection intensity, and storing coordinate values of the first location and the top and bottom surface specular reflection intensity in a memory. The method may further include comparing the top surface specular reflection intensity measured at each location with a first threshold value, comparing the bottom surface specular reflection intensity measured at each location with a second threshold value, and determining if a defect is present at each location and on which surface the defect is present. The method may further include comparing the top surface specular reflection intensity measured at each location with a first intensity range, comparing the bottom surface specular reflection intensity measured at each location with a second intensity range, and determining on which surface the defect is present.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: March 20, 2018
    Assignee: ZETA INSTRUMENTS, INC.
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen
  • Publication number: 20180045937
    Abstract: A method of generating 3D information of a sample using an optical microscope includes: varying the distance between the sample and an objective lens of the optical microscope at predetermined steps, capturing an image at each predetermined step. In one example, the method further includes: determining a characteristic of each pixel in each captured image; determining, for each captured image, the greatest characteristic across all pixels in the captured image; and comparing the greatest characteristic for each captured image to determine if a surface of the sample is present at each step. In another example, the method further includes: determining a characteristic of each pixel in each captured image; determining, for each captured image, a count of pixels that have a characteristic value within a first range; and determining if a surface of the sample is present at each step based on the count of pixels for each captured image.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 15, 2018
    Inventors: James Jianguo Xu, Ronny Soetarman
  • Publication number: 20180045946
    Abstract: A method of generating 3D information includes: varying the distance between the sample and an objective lens of the optical microscope at pre-determined steps, capturing an image at each pre-determined step; determining a characteristic value of each pixel in each captured image; determining, for each captured image, the greatest characteristic value across all pixels in the captured image; comparing the greatest characteristic value for each captured image to determine if a surface of the sample is present at each pre-determined step; determining a first captured image that is focused on a first surface of the sample based on the characteristic value of each pixel in each captured image; determining a second captured image that is focused on a second surface of the sample based on the characteristic value of each pixel in each captured image; and determining a first distance between the first surface and the second surface.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 15, 2018
    Inventors: James Jianguo Xu, Ronny Soetarman, Budi Hartono
  • Publication number: 20180045947
    Abstract: A method of generating 3D information including: varying the distance between the sample and an objective lens of the optical microscope at pre-determined steps; capturing an image at each pre-determined step; determining a characteristic value of each pixel in each captured image; determining, for each captured image, the greatest characteristic value across a first portion of pixels in the captured image; comparing the greatest characteristic value for each captured image to determine if a surface of the sample is present at each pre-determined step; determining a first captured image that is focused on an apex of a bump of the sample; determining a second captured image that is focused on a first surface of the sample based on the characteristic value of each pixel in each captured image; and determining a first distance between the apex of the bump and the first surface.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 15, 2018
    Inventors: Ronny Soetarman, James Jianguo Xu
  • Publication number: 20180047148
    Abstract: A method of generating 3D information of a sample using an optical microscope includes: varying the distance between the sample and an objective lens of the optical microscope at pre-determined steps, capturing an image at each pre-determined step, determining a characteristic value of each pixel in each captured image, determining a first captured image that is focused on a first surface of the sample based on the characteristic value of each pixel in each captured image, and determining a measurement of an opening in the first surface of the sample based on the first captured image. The first surface of the sample and the second surface of the sample are within a field of view of each of the captured images. The first captured image includes a pattern overlay. In another example, the opening measurement is determined using a second captured image without a pattern overlay.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 15, 2018
    Inventors: James Jianguo Xu, Ronny Soetarman, Ken Kinsun Lee, Nitigya Kathuria
  • Publication number: 20180005364
    Abstract: A dual mode inspector includes an optical inspector configured to detect a defect located at a first location on a sample, a microscope configured to capture an image of the defect at the first location on the sample, and a platform that is configured to support the sample. The sample is not removed from the platform between the detecting of the defect located at the first location on the sample and the capturing of the image of the defect at the first location on the sample. The dual mode optical inspector also includes a controller that causes the optical inspector to detect the defect located at the first location on the sample and causes the microscope to capture the image of the defect at the first location on the sample. The dual mode inspector also performs scanning lens distortion correction to improve the capturing of defect images.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 4, 2018
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen, James Jianguo Xu
  • Publication number: 20170336331
    Abstract: An optical inspector includes a time varying beam reflector, a radiating source that irradiates the time varying beam reflector, a telecentric scan lens configured to direct the radiation reflected by the time varying beam reflector onto a first surface of a transparent sample, a first detector that receives at least a portion of top surface specular reflection, a second detector that receives at least a portion of the bottom surface specular reflection. A turning mirror may also be included. The turning mirror is a switchable mirror that can be adjusted to a first position where the turning mirror reflects the top and bottom surface specular reflection, and can be adjusted to a second position where the turning mirror does not reflect the top or the bottom surface specular reflection. A first and second polarizing element may also be included to detect additional types of defects on either surface.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen
  • Publication number: 20170336330
    Abstract: A method for detecting defects includes directing a scanning beam to a location on a surface of a transparent sample, measuring top and bottom surface specular reflection intensity, and storing coordinate values of the first location and the top and bottom surface specular reflection intensity in a memory. The method may further include comparing the top surface specular reflection intensity measured at each location with a first threshold value, comparing the bottom surface specular reflection intensity measured at each location with a second threshold value, and determining if a defect is present at each location and on which surface the defect is present. The method may further include comparing the top surface specular reflection intensity measured at each location with a first intensity range, comparing the bottom surface specular reflection intensity measured at each location with a second intensity range, and determining on which surface the defect is present.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen