Patents by Inventor Roozbeh Ghaffari

Roozbeh Ghaffari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10477354
    Abstract: An electronic device worn on a user includes one or more accelerometers. The one or more accelerometers generate acceleration information based on acceleration experienced by the electronic device. The electronic device further includes a processor and one or more associated memories, and the one or more associate memories include computer program code executable by the processor. The processor, configured by the computer program code, causes the electronic device to process the acceleration information to extract features from the acceleration information. The processor, configured by the computer program code, further causes the electronic device to process the features to determine the location of the electronic device on the user.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: November 12, 2019
    Assignee: MC10, INC.
    Inventors: Shyamal Patel, Ryan S. McGinnis, Aadithya Prakash, Roozbeh Ghaffari, Milan Raj, Ikaro Silva, Elise Jortberg
  • Patent number: 10467926
    Abstract: Conformal sensor systems and devices are used for sensing and analysis of data indicative of body motion, e.g., for such applications as training and/or clinical purposes. Flexible electronics technology can be implemented as conformal sensors for sensing or measuring motion (including body motion and/or muscle activity), heart rate, electrical activity, and/or body temperature for such applications as medical diagnosis, medical treatment, physical activity, physical therapy and/or clinical purposes. The conformal sensors can be used for detecting and quantifying impact, and can be used for central nervous system disease monitoring.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: November 5, 2019
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Isaiah Kacyvenski, Conor Rafferty, Milan Raj, Melissa Ceruolo, Yung-Yu Hsu, Bryan Keen, Briana Morey, Brian Reilly, Ping-Hung Wei
  • Patent number: 10383219
    Abstract: In embodiments, the present invention may attach at least two isolated electronic components to an elastomeric substrate, and arrange an electrical interconnection between the components in a boustrophedonic pattern interconnecting the two isolated electronic components with the electrical interconnection. The elastomeric substrate may then be stretched such that the components separate relative to one another, where the electrical interconnection maintains substantially identical electrical performance characteristics during stretching, and where the stretching may extend the separation distance between the electrical components to many times that of the unstretched distance.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 13, 2019
    Assignee: MC10, Inc.
    Inventors: William J. Arora, Roozbeh Ghaffari
  • Patent number: 10325951
    Abstract: System, devices and methods are presented that provide an imaging array fabrication process method, comprising fabricating an array of semiconductor imaging elements, interconnecting the elements with stretchable interconnections, and transfer printing the array with a pre-strained elastomeric stamp to a secondary non-planar surface.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 18, 2019
    Assignee: MC10, INC.
    Inventors: Bassel de Graff, Gilman Callsen, William J. Arora, Roozbeh Ghaffari
  • Patent number: 10300371
    Abstract: A system for providing a more personalized virtual environment for a user, the system including one or more sensing devices that detect one or more physical, physiological, or biological parameters of the user and transmit the same to a game console or virtual reality controller that produces the virtual environment. The game console or virtual reality controller can analyze the sensor data and adjust one or more aspects of the virtual environment as a function of the sensor data. For example, the difficulty level or scariness level of a game can be decreased if the heart rate of the user exceeds a predetermined threshold.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 28, 2019
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Milan Raj, Bryan McGrane
  • Patent number: 10258282
    Abstract: Systems, methods and apparatuses for monitoring cardiac activity of an individual using a conformal cardiac sensor device are presented herein. A conformal cardiac sensor device for analyzing cardiac activity includes a flexible substrate for coupling to the user, and a heart sensor component embedded on/in the substrate. The heart sensor component contacts a portion of the user's skin and measures electrical variable(s) indicative of cardiac activity. A biometric sensor component is embedded on/in the flexible substrate and measures physiological variable(s) indicative of cardiac activity of the user. A microprocessor, which is embedded on/in the flexible substrate, is communicatively coupled to the heart sensor component and biometric sensor component and operable to execute microprocessor executable instructions for controlling the measurements of electrical data and physiological data.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 16, 2019
    Assignee: MC10, Inc.
    Inventors: Gilbert Lee Huppert, Roozbeh Ghaffari, Melissa Ceruolo, Bryan Keen, Milan Raj, Bryan McGrane
  • Patent number: 10186546
    Abstract: System, devices and methods are presented that integrate stretchable or flexible circuitry, including arrays of active devices for enhanced sensing, diagnostic, and therapeutic capabilities. The invention enables conformal sensing contact with tissues of interest, such as the inner wall of a lumen, a the brain, or the surface of the heart. Such direct, conformal contact increases accuracy of measurement and delivery of therapy. Further, the invention enables the incorporation of both sensing and therapeutic devices on the same substrate allowing for faster treatment of diseased tissue and fewer devices to perform the same procedure.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: January 22, 2019
    Assignee: MC10, Inc.
    Inventors: Bassel De Graff, Roozbeh Ghaffari, William J. Arora
  • Publication number: 20180302980
    Abstract: In embodiments, the present invention may attach at least two isolated electronic components to an elastomeric substrate, and arrange an electrical interconnection between the components in a boustrophedonic pattern interconnecting the two isolated electronic components with the electrical interconnection. The elastomeric substrate may then be stretched such that the components separate relative to one another, where the electrical interconnection maintains substantially identical electrical performance characteristics during stretching, and where the stretching may extend the separation distance between the electrical components to many times that of the un-stretched distance.
    Type: Application
    Filed: December 21, 2017
    Publication date: October 18, 2018
    Inventors: William J. Arora, Roozbeh Ghaffari
  • Publication number: 20180199884
    Abstract: Systems, methods and apparatuses for monitoring cardiac activity of an individual using a conformal cardiac sensor device are presented herein. A conformal cardiac sensor device for analyzing cardiac activity includes a flexible substrate for coupling to the user, and a heart sensor component embedded on/in the substrate. The heart sensor component contacts a portion of the user's skin and measures electrical variable(s) indicative of cardiac activity. A biometric sensor component is embedded on/in the flexible substrate and measures physiological variable(s) indicative of cardiac activity of the user. A microprocessor, which is embedded on/in the flexible substrate, is communicatively coupled to the heart sensor component and biometric sensor component and operable to execute microprocessor executable instructions for controlling the measurements of electrical data and physiological data.
    Type: Application
    Filed: March 14, 2018
    Publication date: July 19, 2018
    Inventors: Gilbert Lee Huppert, Roozbeh Ghaffari, Melissa Ceruolo, Bryan Keen, Milan Raj, Bryan McGrane
  • Publication number: 20180190704
    Abstract: System, devices and methods are presented that provide an imaging array fabrication process method, comprising fabricating an array of semiconductor imaging elements, interconnecting the elements with stretchable interconnections, and transfer printing the array with a pre-strained elastomeric stamp to a secondary non-planar surface.
    Type: Application
    Filed: June 12, 2017
    Publication date: July 5, 2018
    Inventors: Bassel de Graff, Gilman Callsen, William J. Arora, Roozbeh Ghaffari
  • Publication number: 20180111353
    Abstract: The present invention describes multilayered adhesive structures that can be used as adhesives to mount wearable devices onto the skin. The multilayered adhesive structures can comprise a buffer layer sandwiched between two adhesive layers, a first adhesive layer adhering the multilayered adhesive structure to the wearable device and a second adhesive layer adhering the buffer layer to the skin. The buffer layer separates or isolates the wearable device from the skin. By mechanically buffering the wearable device from the skin, the multilayered adhesive structures permit the devices to be skin-mounted for an extended period of time (e.g., a few hours or days) without causing moisture-associated skin injuries such as erythema, maceration, and irritation or inflammation.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: Gilbert Lee Huppert, Xianyan Wang, Roozbeh Ghaffari, Pinghung Wei, Ji Hyung Suzy Hong, Hakan Mutlu, Brian Murphy, David G. Garlock
  • Patent number: 9949691
    Abstract: Systems, methods and apparatuses for monitoring cardiac activity of an individual using a conformal cardiac sensor device are presented herein. A conformal cardiac sensor device for analyzing cardiac activity includes a flexible substrate for coupling to the user, and a heart sensor component embedded on/in the substrate. The heart sensor component contacts a portion of the users skin and measures electrical variable(s) indicative of cardiac activity. A biometric sensor component is embedded on/in the flexible substrate and measures physiological variable(s) indicative of cardiac activity of the user. A microprocessor, which is embedded on/in the flexible substrate, is communicatively coupled to the heart sensor component and biometric sensor component and operable to execute microprocessor executable instructions for controlling the measurements of electrical data and physiological data.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: April 24, 2018
    Assignee: MC10, Inc.
    Inventors: Gilbert Lee Huppert, Roozbeh Ghaffari, Melissa Ceruolo, Bryan Keen, Milan Raj, Bryan McGrane
  • Publication number: 20180076336
    Abstract: System, devices and methods are presented that integrate stretchable or flexible circuitry, including arrays of active devices for enhanced sensing, diagnostic, and therapeutic capabilities. The invention enables conformal sensing contact with tissues of interest, such as the inner wall of a lumen, a the brain, or the surface of the heart. Such direct, conformal contact increases accuracy of measurement and delivery of therapy. Further, the invention enables the incorporation of both sensing and therapeutic devices on the same substrate allowing for faster treatment of diseased tissue and fewer devices to perform the same procedure.
    Type: Application
    Filed: April 27, 2017
    Publication date: March 15, 2018
    Applicant: MC10, Inc.
    Inventors: Bassel De Graff, Roozbeh Ghaffari, William J. Arora
  • Patent number: 9894757
    Abstract: In embodiments, the present invention may attach at least two isolated electronic components to an elastomeric substrate, and arrange an electrical interconnection between the components in a boustrophedonic pattern interconnecting the two isolated electronic components with the electrical interconnection. The elastomeric substrate may then be stretched such that the components separate relative to one another, where the electrical interconnection maintains substantially identical electrical performance characteristics during stretching, and where the stretching may extend the separation distance between the electrical components to many times that of the unstretched distance.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 13, 2018
    Assignee: MC10, Inc.
    Inventors: William J. Arora, Roozbeh Ghaffari
  • Patent number: 9833190
    Abstract: A system, device and method are presented for utilizing stretchable active integrated circuits with inflatable bodies. The invention allows for such operative features to come into direct contact with body structures, such as the inner wall of a lumen. Such direct contact increases accuracy of measurement and delivery of therapy.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: December 5, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Gilman Callsen, William J. Arora, Benjamin Schlatka
  • Publication number: 20170340236
    Abstract: An apparatus for medical diagnosis and/or treatment is provides. The apparatus includes a flexible substrate forming an inflatable body and a plurality of force sensing elements disposed on the flexible substrate. The plurality of force sensing elements are disposed about the inflatable body such that the force sensing elements are disposed at areas of minimal curvature of the inflatable body in a deflated state.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 30, 2017
    Inventors: Roozbeh Ghaffari, Yung-Yu Hsu
  • Patent number: 9810623
    Abstract: The present invention relates to portable devices for point-of-care diagnostics that can perform measurements on a sample (e.g., blood, serum, saliva, or urine) and relay data to an external device for, e.g., data analysis. The device can comprise a paper-based diagnostic substrate and a base substrate that include electronic circuitry and electronic elements necessary for performing the measurements. The device can also comprise an antenna for near field communication with an external device. Another aspect of the invention relates to methods of using these devices.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 7, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Alexander Aranyosi, Stephen Lee
  • Patent number: 9801557
    Abstract: Devices and methods are provided for performing procedure on tissue with flow monitoring using flow sensors. The devices include an elongated member, and at least one flow sensor disposed on the elongated member. The flow sensor includes at least one temperature sensor and at least one heating element having a cavity. At least a portion of the at least one temperature sensor is housed in the cavity. A temperature measurement of the temperature sensor provides an indication of the flow rate of a fluid proximate to the flow sensor.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 31, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Stephen Lee, John Work, John A. Wright, Jr., Lauren Klinker
  • Publication number: 20170296114
    Abstract: A perspiration sensing system includes a sensor patch and a smart device. The sensor patch includes one or more perspiration sensing portions. The one or more perspiration sensing portions include an inlet having a predefined size to receive perspiration from a predefined number of sweat glands and an outlet for reducing back pressure. At least one perspiration sensing portion includes a channel having a colorimetric sensing material that changes color when exposed to perspiration. At least one perspiration sensing portion includes a colorimetric assay in a substrate that changes color when exposed to biochemical components of perspiration. The system further includes a smart device having a camera that can take a picture of the sensor patch and determine the volume, rate of perspiration, and/or biochemical components of the perspiration from the one or more perspiration sensing portions.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 19, 2017
    Inventors: Roozbeh Ghaffari, Gilbert Lee Huppert, Brian Murphy, Isaiah Kacyvenski
  • Patent number: 9757050
    Abstract: An apparatus for medical diagnosis and/or treatment is provides. The apparatus includes a flexible substrate forming an inflatable body and a plurality of force sensing elements disposed on the flexible substrate. The plurality of force sensing elements are disposed about the inflatable body such that the force sensing elements are disposed at areas of minimal curvature of the inflatable body in a deflated state.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 12, 2017
    Assignee: MC10, Inc.
    Inventors: Roozbeh Ghaffari, Yung-Yu Hsu