Patents by Inventor Rosemary S. Turingan

Rosemary S. Turingan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389487
    Abstract: Described herein are instruments for excitation and detection of fluorophores in a plurality of functional regions in a biochip, using an excitation source and a steering element that directs a beam from the excitation source to a plurality of functional regions in the biochip, wherein the excitation source excites the fluorophores in the plurality of functional regions generating a signal that is detected such that said signal from at least one of the plurality of functional regions allows for nucleic acid quantification. Also described are systems for quantification and separation and detection using optical devices adapted for preliminary, simultaneous or sequential quantitation of nucleic acid in separate detection positions, and for the excitation and detection of multiple samples to steer both the excitation and detection beam paths to separately image each lane of a biochip.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 8, 2022
    Applicant: ANDE Corporation
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan
  • Publication number: 20220315996
    Abstract: Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
    Type: Application
    Filed: June 9, 2022
    Publication date: October 6, 2022
    Applicant: ANDE CORPORATION
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan
  • Patent number: 11441173
    Abstract: Described herein are instruments for excitation and detection of fluorophores in a plurality of functional regions in a biochip, using an excitation source and a steering element that directs a beam from the excitation source to a plurality of functional regions in the biochip, wherein the excitation source excites the fluorophores in the plurality of functional regions generating a signal that is detected such that said signal from at least one of the plurality of functional regions allows for nucleic acid quantification. Also described are systems for quantification and separation and detection using optical devices adapted for preliminary, simultaneous or sequential quantitation of nucleic acid in separate detection positions, and for the excitation and detection of multiple samples to steer both the excitation and detection beam paths to separately image each lane of a biochip.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: September 13, 2022
    Assignee: ANDE CORPORATION
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan
  • Publication number: 20200248243
    Abstract: Described herein are instruments for excitation and detection of fluorophores in a plurality of functional regions in a biochip, using an excitation source and a steering element that directs a beam from the excitation source to a plurality of functional regions in the biochip, wherein the excitation source excites the fluorophores in the plurality of functional regions generating a signal that is detected such that said signal from at least one of the plurality of functional regions allows for nucleic acid quantification. Also described are systems for quantification and separation and detection using optical devices adapted for preliminary, simultaneous or sequential quantitation of nucleic acid in separate detection positions, and for the excitation and detection of multiple samples to steer both the excitation and detection beam paths to separately image each lane of a biochip.
    Type: Application
    Filed: December 27, 2019
    Publication date: August 6, 2020
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan
  • Patent number: 10538804
    Abstract: Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 21, 2020
    Assignee: ANDE Corporation
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan
  • Publication number: 20170204453
    Abstract: Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 20, 2017
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan
  • Patent number: 9550985
    Abstract: Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: January 24, 2017
    Assignee: NetBio, Inc.
    Inventors: Eugene Tan, Richard F Selden, Rosemary S. Turingan
  • Publication number: 20110008785
    Abstract: Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
    Type: Application
    Filed: June 15, 2010
    Publication date: January 13, 2011
    Applicant: NetBio, Inc.
    Inventors: Eugene Tan, Richard F. Selden, Rosemary S. Turingan