Patents by Inventor Ross D. HINRICHSEN

Ross D. HINRICHSEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317248
    Abstract: Novel tools and techniques are provided for presenting patient information to a user. In some embodiments, a computer system may: receive device data associated with one or more devices configured to perform a cardiac blood flow procedure to provide effective blood flow through a heart and to or from blood vessels of a patient; receive one or more imaging data associated with one or more imaging devices configured to generate images of one or more internal portions of the patient; analyze the device data and the imaging data; map the device data and the imaging data to a multi-dimensional representation of the one or more internal portions of the patient; generate one or more image-based outputs based at least in part on the mapping; and present, using a user experience (“UX”) device, the generated one or more image-based outputs.
    Type: Application
    Filed: May 28, 2021
    Publication date: October 5, 2023
    Inventors: Peter N. Braido, Mina S. Fahim, Ross D. Hinrichsen, Shinichi Joseph Takayama
  • Publication number: 20220110713
    Abstract: According to one aspect of the invention, a system for assessing at least one characteristic of a device within a recipient is provided. The system includes a device removably insertable into the recipient where the device includes at least one of a treatment element and implant, and at least one wireless tag positioned within at least one portion of the device. The system includes a tracking device that includes processing circuitry configured to: if the device is inserted into the recipient, interrogate the at least one wireless tag positioned within at least one portion of the device; determine at least one characteristic of at least one portion of the device in three dimensional space based at least in part on the interrogation of the at least one wireless tag; and cause the at least one characteristic of the at least one portion of the device relative to the recipient to be indicated.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Inventors: Ross D. HINRICHSEN, William C. HARDING, Peter N. BRAIDO, Mina S. FAHIM
  • Patent number: 11210479
    Abstract: A system for assessing at least one characteristic of a device within a recipient is provided. The system includes a device removably insertable into the recipient where the device includes at least one of a treatment element and implant, and at least one wireless tag positioned within at least one portion of the device. The system includes a tracking device that includes processing circuitry configured to: if the device is inserted into the recipient, interrogate the at least one wireless tag positioned within at least one portion of the device; determine at least one characteristic of at least one portion of the device in three dimensional space based at least in part on the interrogation of the at least one wireless tag; and cause the at least one characteristic of the at least one portion of the device relative to the recipient to be indicated.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ross D. Hinrichsen, William C. Harding, Peter N. Braido, Mina S. Fahim
  • Publication number: 20210369394
    Abstract: Novel tools and techniques are provided for implementing intelligent assistance (“IA”) ecosystem. In various embodiments, a computing system might receive device data associated with a device(s) configured to perform a task(s), might receive sensor data associated with sensors configured to monitor at least one of biometric, biological, genetic, cellular, or procedure-related data of a subject, and might receive imaging data associated with an imaging device(s) configured to generate images of a portion(s) of the subject. The computing system might analyze the received device data, sensor data, and imaging data (collectively “received data”), might map two or more of the received data to a 3D or 4D representation of the portion(s) of the subject based on the analysis, might generate and present (using a user experience (“UX”) device) one or more extended reality (“XR”) images or experiences based on the mapping.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 2, 2021
    Inventors: Peter N. Braido, Mina S. Fahim, Ross D. Hinrichsen, Shinichi J. Takayama, Monica M. Bolin
  • Publication number: 20210369393
    Abstract: Novel tools and techniques are provided for implementing intelligent assistance (“IA”) ecosystem, and, in some cases, for implementing extended reality (“XR”) for cardiac arrhythmia procedures. In various embodiments, a computing system might receive device data associated with a device(s) configured to perform a cardiac arrhythmia procedure to provide effective heart rhythm, might receive imaging data associated with an imaging device(s) configured to generate images of a portion(s) of a patient. The computing system might analyze the received device data and imaging data (collectively “received data”), might map the received data to a 3D or 4D representation of the portion(s) of the patient based on the analysis, and might generate and present (using a user experience (“UX”) device) one or more XR images or experiences based on the mapping.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 2, 2021
    Inventors: Peter N. Braido, Mina S. Fahim, Ross D. Hinrichsen, William Harding, Julia Schraut, Monica M. Bolin, Nicolas Coulombe, Dan Wittenberger, Jean-Pierre Lalonde, Megan Harris, Angela Burgess
  • Patent number: 11179200
    Abstract: An augmented reality system includes an augmented reality display system; and processing circuitry in communication with the augmented reality display system. The processing circuity configured to receive, from a mapping system, data associated with a subject's anatomical feature; receive, from a navigation system, an indication of a position of a treatment device within the subject's anatomical feature; and display, via the augmented reality display system, a virtual organ object and at least one of the data associated with the subject's anatomical feature and the indication of the position of the treatment device within the subject's anatomical feature overlaying a real-world environment viewable by a user via the augmented reality display system.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: November 23, 2021
    Assignee: Medtronic, Inc.
    Inventors: Mina S. Fahim, Peter N. Braido, Ross D. Hinrichsen, Jeffrey J. Jannicke
  • Patent number: 11135017
    Abstract: A method for enhancing a surgical procedure includes providing a three-dimensional model of a patient's organ of a patient based on pre-operative image data of the patient's organ; identifying positional data corresponding to a first position of at least one target treatment anatomy of the patient relative to a second position of an ancillary target anatomy of the patient based on an analysis of the three-dimensional model of the patient's organ of the patient; selecting a puncture location based on the identified positional data; and displaying, by an augmented reality device, a virtual organ object via an augmented reality display system overlaying a real-world environment, the virtual organ object corresponding to the three-dimensional model and visually indicating the selected puncture location.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Mina S. Fahim, Peter N. Braido, Ross D. Hinrichsen
  • Publication number: 20200410176
    Abstract: A system for assessing at least one characteristic of a device within a recipient is provided. The system includes a device removably insertable into the recipient where the device includes at least one of a treatment element and implant, and at least one wireless tag positioned within at least one portion of the device. The system includes a tracking device that includes processing circuitry configured to: if the device is inserted into the recipient, interrogate the at least one wireless tag positioned within at least one portion of the device; determine at least one characteristic of at least one portion of the device in three dimensional space based at least in part on the interrogation of the at least one wireless tag; and cause the at least one characteristic of the at least one portion of the device relative to the recipient to be indicated.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Inventors: Ross D. HINRICHSEN, William C. HARDING, Peter N. BRAIDO, Mina S. FAHIM
  • Publication number: 20200060765
    Abstract: A method for enhancing a surgical procedure includes providing a three-dimensional model of a patient's organ of a patient based on pre-operative image data of the patient's organ; identifying positional data corresponding to a first position of at least one target treatment anatomy of the patient relative to a second position of an ancillary target anatomy of the patient based on an analysis of the three-dimensional model of the patient's organ of the patient; selecting a puncture location based on the identified positional data; and displaying, by an augmented reality device, a virtual organ object via an augmented reality display system overlaying a real-world environment, the virtual organ object corresponding to the three-dimensional model and visually indicating the selected puncture location.
    Type: Application
    Filed: July 19, 2019
    Publication date: February 27, 2020
    Inventors: Mina S. FAHIM, Peter N. BRAIDO, Ross D. HINRICHSEN
  • Patent number: 10413363
    Abstract: A method for enhancing a surgical procedure includes providing a three-dimensional model of a patient's organ of a patient based on pre-operative image data of the patient's organ; identifying positional data corresponding to a first position of at least one target treatment anatomy of the patient relative to a second position of an ancillary target anatomy of the patient based on an analysis of the three-dimensional model of the patient's organ of the patient; selecting a puncture location based on the identified positional data; and displaying, by an augmented reality device, a virtual organ object via an augmented reality display system overlaying a real-world environment, the virtual organ object corresponding to the three-dimensional model and visually indicating the selected puncture location.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: September 17, 2019
    Assignee: Medtronic, Inc.
    Inventors: Mina S. Fahim, Peter N. Braido, Ross D. Hinrichsen
  • Publication number: 20190183576
    Abstract: An augmented reality system includes an augmented reality display system; and processing circuitry in communication with the augmented reality display system. The processing circuity configured to receive, from a mapping system, data associated with a subject's anatomical feature; receive, from a navigation system, an indication of a position of a treatment device within the subject's anatomical feature; and display, via the augmented reality display system, a virtual organ object and at least one of the data associated with the subject's anatomical feature and the indication of the position of the treatment device within the subject's anatomical feature overlaying a real-world environment viewable by a user via the augmented reality display system.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Mina S. FAHIM, Peter N. BRAIDO, Ross D. HINRICHSEN, Jeffrey J. JANNICKE
  • Publication number: 20190183577
    Abstract: A method for enhancing a surgical procedure includes providing a three-dimensional model of a patient's organ of a patient based on pre-operative image data of the patient's organ; identifying positional data corresponding to a first position of at least one target treatment anatomy of the patient relative to a second position of an ancillary target anatomy of the patient based on an analysis of the three-dimensional model of the patient's organ of the patient; selecting a puncture location based on the identified positional data; and displaying, by an augmented reality device, a virtual organ object via an augmented reality display system overlaying a real-world environment, the virtual organ object corresponding to the three-dimensional model and visually indicating the selected puncture location.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Mina S. FAHIM, Peter N. BRAIDO, Ross D. HINRICHSEN