Patents by Inventor Ross VERPLOEGH

Ross VERPLOEGH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210106940
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The absorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Glenn M. TOM, Paul Wai-Man SIU, Jose ARNO, Omar K. FARHA, Ross VERPLOEGH
  • Patent number: 10940426
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The adsorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: March 9, 2021
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Glenn M. Tom, Paul Wai-Man Siu, Jose Arno, Omar K. Farha, Ross Verploegh
  • Patent number: 10898847
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The adsorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: January 26, 2021
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Glenn M. Tom, Paul Wai-Man Siu, Jose Arno, Omar K. Farha, Ross Verploegh
  • Publication number: 20190091620
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The absorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 28, 2019
    Inventors: Glenn M. TOM, Paul Wai-Man SIU, Jose ARNO, Omar K. FARHA, Ross VERPLOEGH