Patents by Inventor Rousko Todorov Hristov

Rousko Todorov Hristov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810968
    Abstract: A method is disclosed, including positioning a lead wire of a gate chip at a distance of less than 10 nm from a semiconductor heterostructure. The heterostructure includes a surface layer and a subsurface layer. The method also includes inducing an electrostatic potential in the subsurface layer by applying a voltage to the lead wire. The method also includes loading a charge carrier into the subsurface layer. The method also includes detecting the charge carrier in the subsurface layer of the semiconductor heterostructure by emitting a radio-frequency pulse using a resonator coupled to the at least one lead wire of the gate chip, detecting a reflected pulse of the emitted radio-frequency pulse, and determining a phase shift of the reflected pulse relative to the emitted radio-frequency pulse. The method also includes characterizing the quantum dot by measuring valley splitting of the quantum dot.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: November 7, 2023
    Inventors: Charles George Tahan, Rousko Todorov Hristov, Yun-Pil Shim, Hilary Hurst
  • Patent number: 11444184
    Abstract: A method is disclosed, including positioning a lead wire of a gate chip at a distance of less than 10 nm from a semiconductor heterostructure. The heterostructure includes a surface layer and a subsurface layer. The method also includes inducing an electrostatic potential in the subsurface layer by applying a voltage to the lead wire. The method also includes loading a charge carrier into the subsurface layer. The method also includes detecting the charge carrier in the subsurface layer of the semiconductor heterostructure by emitting a radio-frequency pulse using a resonator coupled to the at least one lead wire of the gate chip, detecting a reflected pulse of the emitted radio-frequency pulse, and determining a phase shift of the reflected pulse relative to the emitted radio-frequency pulse. The method also includes characterizing the quantum dot by measuring valley splitting of the quantum dot.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: September 13, 2022
    Assignee: U.S. Government as represented by the Director, National Security Agency
    Inventors: Charles George Tahan, Rousko Todorov Hristov, Yun-Pil Shim, Hilary Hurst
  • Patent number: 9397293
    Abstract: An artificial composite object combines a quantum of sound with a matter excitation. A phonon in a confinement structure containing the matter excites it from an initial state to an excited state corresponding to a frequency of the phonon. Relaxation of the matter back to the initial state emits a phonon of the same frequency into the confinement structure. The phonon confinement structure, for example, a cavity, traps the emitted phonon thereby allowing further excitation of the matter. The coupling between the phonon and the matter results in a quantum quasi-particle referred to as a phoniton. The phoniton can find application in a wide variety of quantum systems such as signal processing and communications devices, imaging and sensing, and information processing.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: July 19, 2016
    Assignees: University of Maryland, College Park, The United States of America, as represented by the Director, National Security Agency
    Inventors: Charles George Tahan, Rousko Todorov Hristov, Oney O. Soykal
  • Publication number: 20150280124
    Abstract: An artificial composite object combines a quantum of sound with a matter excitation. A phonon in a confinement structure containing the matter excites it from an initial state to an excited state corresponding to a frequency of the phonon. Relaxation of the matter back to the initial state emits a phonon of the same frequency into the confinement structure. The phonon confinement structure, for example, a cavity, traps the emitted phonon thereby allowing further excitation of the matter. The coupling between the phonon and the matter results in a quantum quasi-particle referred to as a phoniton. The phoniton can find application in a wide variety of quantum systems such as signal processing and communications devices, imaging and sensing, and information processing.
    Type: Application
    Filed: June 10, 2015
    Publication date: October 1, 2015
    Inventors: Charles George TAHAN, Rousko Todorov HRISTOV, Oney O. SOYKAL
  • Patent number: 9059388
    Abstract: An artificial composite object combines a quantum of sound with a matter excitation. A phonon in a confinement structure containing the matter excites it from an initial state to an excited state corresponding to a frequency of the phonon. Relaxation of the matter back to the initial state emits a phonon of the same frequency into the confinement structure. The phonon confinement structure, for example, a cavity, traps the emitted phonon thereby allowing further excitation of the matter. The coupling between the phonon and the matter results in a quantum quasi-particle referred to as a phoniton. The phoniton can find application in a wide variety of quantum systems such as signal processing and communications devices, imaging and sensing, and information processing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2015
    Assignees: University of Maryland College Park, The United States od America, as represented by the Director, National Security Agency
    Inventors: Charles George Tahan, Rousko Todorov Hristov, Oney O. Soykal
  • Publication number: 20140326902
    Abstract: An artificial composite object combines a quantum of sound with a matter excitation. A phonon in a confinement structure containing the matter excites it from an initial state to an excited state corresponding to a frequency of the phonon. Relaxation of the matter back to the initial state emits a phonon of the same frequency into the confinement structure. The phonon confinement structure, for example, a cavity, traps the emitted phonon thereby allowing further excitation of the matter. The coupling between the phonon and the matter results in a quantum quasi-particle referred to as a phoniton. The phoniton can find application in a wide variety of quantum systems such as signal processing and communications devices, imaging and sensing, and information processing.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 6, 2014
    Inventors: Charles George Tahan, Rousko Todorov Hristov, Oney O. Soykal