Patents by Inventor Roxanne Vu

Roxanne Vu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11646724
    Abstract: Disclosed is a system where indicators of the relative phase differences between combinations of clocks in a multi-phase clock system are developed and/or measured. These indicators convey information regarding which phase difference between a given pair of the clocks is greater than (or less than) the phase difference between another pair of the clocks. This information is used to sort/rank/order phase differences between the various combinations of pairs of clocks according to their phase differences. This ranking is used to select the pair of clocks to be adjusted.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: May 9, 2023
    Assignee: Rambus Inc.
    Inventors: Charles Walter Boecker, Roxanne Vu, Eric Douglas Groen
  • Publication number: 20220337232
    Abstract: Disclosed is a system where indicators of the relative phase differences between combinations of clocks in a multi-phase clock system are developed and/or measured. These indicators convey information regarding which phase difference between a given pair of the clocks is greater than (or less than) the phase difference between another pair of the clocks. This information is used to sort/rank/order phase differences between the various combinations of pairs of clocks according to their phase differences. This ranking is used to select the pair of clocks to be adjusted.
    Type: Application
    Filed: February 10, 2022
    Publication date: October 20, 2022
    Inventors: Charles Walter BOECKER, Roxanne VU, Eric Douglas GROEN
  • Patent number: 11283435
    Abstract: Disclosed is a system where indicators of the relative phase differences between combinations of clocks in a multi-phase clock system are developed and/or measured. These indicators convey information regarding which phase difference between a given pair of the clocks is greater than (or less than) the phase difference between another pair of the clocks. This information is used to sort/rank/order phase differences between the various combinations of pairs of clocks according to their phase differences. This ranking is used to select the pair of clocks to be adjusted.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 22, 2022
    Assignee: Rambus Inc.
    Inventors: Charles Walter Boecker, Roxanne Vu, Eric Douglas Groen
  • Publication number: 20200204166
    Abstract: Disclosed is a system where indicators of the relative phase differences between combinations of clocks in a multi-phase clock system are developed and/or measured. These indicators convey information regarding which phase difference between a given pair of the clocks is greater than (or less than) the phase difference between another pair of the clocks. This information is used to sort/rank/order phase differences between the various combinations of pairs of clocks according to their phase differences. This ranking is used to select the pair of clocks to be adjusted.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 25, 2020
    Inventors: Charles Walter BOECKER, Roxanne VU, Eric Douglas GROEN
  • Patent number: 10658987
    Abstract: The embodiments herein describe technologies of an amplifier circuit that is designed for wideband communication with superconductive components in cryogenic applications, including Josephson Junction integrated circuits, operating in a cryogenic temperature domain (e.g., 4K). The amplifier circuit operates in a temperature domain (e.g., 77K) that is higher than the cryogenic temperature domain of the superconductive components.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 19, 2020
    Assignee: Rambus Inc.
    Inventors: Richelle L. Smith, Roxanne Vu, Carl W. Werner
  • Patent number: 10367636
    Abstract: A receiver with clock phase calibration is disclosed. A first sampling circuit generates first digital data based on an input signal, a sampling phase of the first sampling circuit controlled by a first clock signal. A second sampling circuit generates second digital data based on the input signal, a sampling phase of the second sampling circuit controlled by a second clock signal. Circuitry within the receiver calibrates the clocks in different stages. During a first calibration stage, a phase of the second clock signal is adjusted while the first digital data is selected for generating the output data. During a second calibration stage, a phase of the first clock signal is adjusted while the first digital data is selected for the output data path.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: July 30, 2019
    Assignee: Rambus Inc.
    Inventors: Marko Aleksic, Simon Li, Roxanne Vu
  • Publication number: 20190190463
    Abstract: The embodiments herein describe technologies of an amplifier circuit that is designed for wideband communication with superconductive components in cryogenic applications, including Josephson Junction integrated circuits, operating in a cryogenic temperature domain (e.g., 4K). The amplifier circuit operates in a temperature domain (e.g., 77K) that is higher than the cryogenic temperature domain of the superconductive components.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 20, 2019
    Inventors: Richelle L. Smith, Roxanne Vu, Carl W. Werner
  • Publication number: 20190173661
    Abstract: A receiver with clock phase calibration. A first sampling circuit generates first digital data based on an input signal, a sampling phase of the first sampling circuit controlled by a first clock signal. A second sampling circuit generates second digital data based on the input signal, a sampling phase of the second sampling circuit controlled by a second clock signal. Circuitry within the receiver calibrates the clocks in different stages. During a first calibration stage, a phase of the second clock signal is adjusted while the first digital data is selected for generating the output data. During a second calibration stage, a phase of the first clock signal is adjusted while the first digital data is selected for the output data path.
    Type: Application
    Filed: October 10, 2018
    Publication date: June 6, 2019
    Inventors: Marko Aleksic, Simon Li, Roxanne Vu
  • Patent number: 10310999
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: June 4, 2019
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Patent number: 10129015
    Abstract: A receiver with clock phase calibration. A first sampling circuit generates first digital data based on an input signal, a sampling phase of the first sampling circuit controlled by a first clock signal. A second sampling circuit generates second digital data based on the input signal, a sampling phase of the second sampling circuit controlled by a second clock signal. Circuitry within the receiver calibrates the clocks in different stages. During a first calibration stage, a phase of the second clock signal is adjusted while the first digital data is selected for generating the output data. During a second calibration stage, a phase of the first clock signal is adjusted while the first digital data is selected for the output data path.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: November 13, 2018
    Assignee: Rambus Inc.
    Inventors: Marko Aleksić, Simon Li, Roxanne Vu
  • Publication number: 20180095916
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Application
    Filed: September 13, 2017
    Publication date: April 5, 2018
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Publication number: 20180013544
    Abstract: A receiver with clock phase calibration. A first sampling circuit generates first digital data based on an input signal, a sampling phase of the first sampling circuit controlled by a first clock signal. A second sampling circuit generates second digital data based on the input signal, a sampling phase of the second sampling circuit controlled by a second clock signal. Circuitry within the receiver calibrates the clocks in different stages. During a first calibration stage, a phase of the second clock signal is adjusted while the first digital data is selected for generating the output data. During a second calibration stage, a phase of the first clock signal is adjusted while the first digital data is selected for the output data path.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 11, 2018
    Inventors: Marko Aleksic, Simon Li, Roxanne Vu
  • Patent number: 9785589
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: October 10, 2017
    Assignee: Rambus Inc.
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Patent number: 9755819
    Abstract: A receiver with clock phase calibration. A first sampling circuit generates first digital data based on an input signal, a sampling phase of the first sampling circuit controlled by a first clock signal. A second sampling circuit generates second digital data based on the input signal, a sampling phase of the second sampling circuit controlled by a second clock signal. Circuitry within the receiver calibrates the clocks in different stages. During a first calibration stage, a phase of the second clock signal is adjusted while the first digital data is selected for generating the output data. During a second calibration stage, a phase of the first clock signal is adjusted while the first digital data is selected for the output data path.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: September 5, 2017
    Assignee: Rambus Inc.
    Inventors: Marko Aleksić, Simon Li, Roxanne Vu
  • Publication number: 20170031854
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 2, 2017
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Publication number: 20170005785
    Abstract: A receiver with clock phase calibration. A first sampling circuit generates first digital data based on an input signal, a sampling phase of the first sampling circuit controlled by a first clock signal. A second sampling circuit generates second digital data based on the input signal, a sampling phase of the second sampling circuit controlled by a second clock signal. Circuitry within the receiver calibrates the clocks in different stages. During a first calibration stage, a phase of the second clock signal is adjusted while the first digital data is selected for generating the output data. During a second calibration stage, a phase of the first clock signal is adjusted while the first digital data is selected for the output data path.
    Type: Application
    Filed: June 8, 2016
    Publication date: January 5, 2017
    Inventors: Marko Aleksic, Simon Li, Roxanne Vu
  • Patent number: 9405678
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: August 2, 2016
    Assignee: Rambus Inc.
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Publication number: 20160011973
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Patent number: 9164933
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 20, 2015
    Assignee: Rambus Inc.
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau
  • Publication number: 20150169478
    Abstract: An integrated circuit device includes a transmitter circuit operable to transmit a timing signal over a first wire to a DRAM. The DRAM receives a first signal having a balanced number of logical zero-to-one transitions and one-to-zero transitions and samples the first signal at a rising edge of the timing signal to produce a respective sampled value. The device further includes a receiver circuit to receive the respective sampled value from the DRAM over a plurality of wires separate from the first wire. In a first mode, the transmitter circuit repeatedly transmits incrementally offset versions of the timing signal to the DRAM until sampled values received from the DRAM change from a logical zero to a logical one or vice versa; and in a second mode, it transmits write data over the plurality of wires to the DRAM according to a write timing offset generated based on the sampled values.
    Type: Application
    Filed: February 3, 2015
    Publication date: June 18, 2015
    Inventors: Jared LeVan Zerbe, Kevin S. Donnelly, Stefanos Sidiropoulos, Donald C. Stark, Mark A. Horowitz, Leung Yu, Roxanne Vu, Jun Kim, Bruno W. Garlepp, Tsyr-Chyang Ho, Benedict Chung-Kwong Lau