Patents by Inventor Roy D. Mead

Roy D. Mead has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9684077
    Abstract: An apparatus, method and associated fiber-laser architectures for high-power pulsed operation and pumping wavelength-conversion devices. Some embodiments generate blue laser light by frequency quadrupling infrared (IR) light from Tm-doped gain fiber using non-linear wavelength conversion. Some embodiments use a fiber MOPA configuration to amplify a seed signal from a semiconductor laser or ring fiber laser. Some embodiments use the frequency-quadrupled blue light for underwater communications, imaging, and/or object and anomaly detection. Some embodiments amplitude modulate the IR seed signal to encode communication data sent to or from a submarine once the modulated light has its wavelength quartered.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: June 20, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: Roy D. Mead, John D. Minelly, Eric C. Honea
  • Publication number: 20150219765
    Abstract: An apparatus, method and associated fiber-laser architectures for high-power pulsed operation and pumping wavelength-conversion devices. Some embodiments generate blue laser light by frequency quadrupling infrared (IR) light from Tm-doped gain fiber using non-linear wavelength conversion. Some embodiments use a fiber MOPA configuration to amplify a seed signal from a semiconductor laser or ring fiber laser. Some embodiments use the frequency-quadrupled blue light for underwater communications, imaging, and/or object and anomaly detection. Some embodiments amplitude modulate the IR seed signal to encode communication data sent to or from a submarine once the modulated light has its wavelength quartered.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 6, 2015
    Inventors: Roy D. Mead, John D. Minelly, Eric C. Honea
  • Patent number: 8953647
    Abstract: An apparatus, method and associated fiber-laser architectures for high-power pulsed operation and pumping wavelength-conversion devices. Some embodiments generate blue laser light by frequency quadrupling infrared (IR) light from Tm-doped gain fiber using non-linear wavelength conversion. Some embodiments use a fiber MOPA configuration to amplify a seed signal from a semiconductor laser or ring fiber laser. Some embodiments use the frequency-quadrupled blue light for underwater communications, imaging, and/or object and anomaly detection. Some embodiments amplitude modulate the IR seed signal to encode communication data sent to or from a submarine once the modulated light has its wavelength quartered.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: February 10, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Roy D. Mead, John D. Minelly, Eric C. Honea
  • Patent number: 8472763
    Abstract: A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 25, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Anping Liu, Eric C. Honea, Charles A. Lemaire, Roy D. Mead, Christopher D. Brooks, Andrew J. W. Brown, Charles E. Hamilton, Thomas H. Loftus, Fabio Di Teodoro
  • Patent number: 8441718
    Abstract: Fiber-laser light is Raman shifted to eye-safer wavelengths prior to spectral beam combination, enabling a high-power, eye-safer wavelength directed-energy (DE) system. The output of Ytterbium fiber lasers is not used directly for spectral beam combining. Rather, the power from the Yb fiber lasers is Raman-shifted to longer wavelengths, and these wavelengths are then spectrally beam combined. Raman shifting is most readily accomplished with a “cascaded Raman converter,” in which a series of nested fiber cavities is formed using fiber Bragg gratings.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: May 14, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Roy D. Mead
  • Patent number: 8363312
    Abstract: In some embodiments, the present invention provides an apparatus and process wherein excess stored optical energy is removed from one or more stages in a fiber-amplifier, in order to stabilize the gain and obtain a constant level of energy per pulse. In some embodiments, a method of the invention includes providing a gain fiber, optically pumping the gain fiber using pump light, amplifying seed-signal pulses having a signal wavelength using the gain fiber to obtain amplified output pulses, and automatically limiting a gain of the gain fiber. In some embodiments, an apparatus of the invention includes a gain fiber, a source of pump light coupled to the gain fiber, a source of seed-signal pulses having a signal wavelength coupled to the gain fiber, wherein the gain fiber outputs amplified signal pulses, and an automatic-gain-control mechanism configured to limit gain of the gain fiber.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 29, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Eric C. Honea, Roy D. Mead, John D. Minelly
  • Publication number: 20110122482
    Abstract: Fiber-laser light is Raman shifted to eye-safer wavelengths prior to spectral beam combination, enabling a high-power, eye-safer wavelength directed-energy (DE) system. The output of Ytterbium fiber lasers is not used directly for spectral beam combining. Rather, the power from the Yb fiber lasers is Raman-shifted to longer wavelengths, and these wavelengths are then spectrally beam combined. Raman shifting is most readily accomplished with a “cascaded Raman converter,” in which a series of nested fiber cavities is formed using fiber Bragg gratings.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 26, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventor: Roy D. Mead
  • Patent number: 7876498
    Abstract: In some embodiments, the present invention provides an apparatus and process wherein excess stored optical energy is removed from one or more stages in a fiber-amplifier, in order to stabilize the gain and obtain a constant level of energy per pulse. In some embodiments, a method of the invention includes providing a gain fiber, optically pumping the gain fiber using pump light, amplifying seed-signal pulses having a signal wavelength using the gain fiber to obtain amplified output pulses, and automatically limiting a gain of the gain fiber. In some embodiments, an apparatus of the invention includes a gain fiber, a source of pump light coupled to the gain fiber, a source of seed-signal pulses having a signal wavelength coupled to the gain fiber, wherein the gain fiber outputs amplified signal pulses, and an automatic-gain-control mechanism configured to limit gain of the gain fiber.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Eric C. Honea, Roy D. Mead, John D. Minelly
  • Patent number: 7535631
    Abstract: Apparatus and method for spectral-beam combining light from a plurality of high-power fiber lasers that, in some embodiments, use two substantially identical diffraction gratings in a parallel, mutually compensating configuration to combine a plurality of separate parallel input beams each having a slightly different successively higher wavelength into a single output beam of high quality. In other embodiments, a single diffraction grating is used to combine a plurality of different wavelengths, wherein the input laser beams are obtained from very narrow linewidth sources to reduce chromatic dispersion. In some embodiments, diagnostics and adjustments of wavelengths and/or positions and angles are made dynamically in real time to maintain the combination of the plurality input beams into a single high-quality output beam.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 19, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Andrew J. W. Brown, Eric C. Honea, Thomas H. Loftus, Roy D. Mead, Charles E. Hamilton, Anping Liu, Charles A. Lemaire
  • Publication number: 20080077200
    Abstract: A hand-held self-contained nerve-stimulation device and method using light to provide a source of precise stimulation on one or more nerve fibers. In some embodiments, this simulation is provided through a device and method wherein a laser- or LED-light source is mounted to the handpiece. Light is passed from the light source through optical tip to simulate nerves. In some embodiments, the device is constructed from non-magnetic material such as glass, plastic or ceramics. In some embodiments, the light emanating from the optical tip can be controlled manually or automatically. In some embodiments, the handpiece contains a self-contained power source, such as batteries. In some embodiments, the handpiece is at least in part, activated by remote control in order to prevent moving the handpiece during activation. Some embodiments include a unit operable to sense a response of nerve stimulation and to suppress a laser-ablation surgery operation.
    Type: Application
    Filed: September 28, 2006
    Publication date: March 27, 2008
    Applicant: ACULIGHT CORPORATION
    Inventors: Mark P. Bendett, James S. Webb, Roy D. Mead, Charles A. Lemaire
  • Patent number: 7233442
    Abstract: Apparatus and method for spectral-beam combining light from a plurality of high-power fiber lasers that, in some embodiments, use two substantially identical diffraction gratings in a parallel, mutually compensating configuration to combine a plurality of separate parallel input beams each having a slightly different successively higher wavelength into a single output beam of high quality. In other embodiments, a single diffraction grating is used to combine a plurality of different wavelengths, wherein the input laser beams are obtained from very narrow linewidth sources to reduce chromatic dispersion. In some embodiments, diagnostics and adjustments of wavelengths and/or positions and angles are made dynamically in real time to maintain the combination of the plurality input beams into a single high-quality output beam.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: June 19, 2007
    Assignee: Aculight Corporation
    Inventors: Andrew J. W. Brown, Eric C. Honea, Thomas H. Loftus, Roy D. Mead, Charles E. Hamilton, Anping Liu, Charles A. Lemaire
  • Patent number: 7199924
    Abstract: Apparatus and method for spectral-beam combining light from a plurality of high-power fiber lasers that, in some embodiments, use two substantially identical diffraction gratings in a parallel, mutually compensating configuration to combine a plurality of separate parallel input beams each having a slightly different successively higher wavelength into a single output beam of high quality. In other embodiments, a single diffraction grating is used to combine a plurality of different wavelengths, wherein the input laser beams are obtained from very narrow linewidth sources to reduce chromatic dispersion. In some embodiments, diagnostics and adjustments of wavelengths and/or positions and angles are made dynamically in real time to maintain the combination of the plurality input beams into a single high-quality output beam.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: April 3, 2007
    Assignee: Aculight Corporation
    Inventors: Andrew J. W. Brown, Eric C. Honea, Thomas H. Loftus, Roy D. Mead, Charles E. Hamilton, Anping Liu, Charles A. Lemaire
  • Patent number: 7065107
    Abstract: A method and apparatus for improving the beam quality of the emissions from a multimode gain medium such as a broad-stripe laser through the use of SBC techniques is provided. In order to achieve the desired beam quality without a significant reduction in output power, discrete lasing regions are formed across the gain medium using an etalon or similar device located within the SBC cavity.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 20, 2006
    Assignee: Aculight Corporation
    Inventors: Charles E. Hamilton, Dennis D Lowenthal, Roy D. Mead
  • Patent number: 6832024
    Abstract: A wide variety of Fiber Bragg writing devices comprising solid state lasers are provided. The solid state lasers emit moderate peak-power output beams which are suitable for efficient production of fiber Bragg gratings without causing embrittlement of the optical waveguide. These solid state lasers generate fourth harmonic output beams with wavelengths of approximately 240 nm, in order to match the primary absorption peak in the ultraviolet range for a typical optical waveguide. Some of these solid state lasers comprise a fequency-doubling crystal and a CLBO crystal used in a non-critically phase-matched orientation as a frequency-quadrupling crystal. In such lasers, both the frequency-doubling crystal and frequency-quadrupling crystal are preferably engineered to minimize or eliminate beam “walkoff.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: December 14, 2004
    Inventors: David C. Gerstenberger, Mark S. Bowers, Dennis D. Lowenthal, Jason N. Farmer, Roy D. Mead, Charles I. Miyake
  • Patent number: 6541731
    Abstract: A laser via drilling system, and a method of use thereof, is provided. The apparatus uses two or more laser systems to achieve processing parameter flexibility. The output beams from the independently controlled laser systems are combined using a beam splitter that combines the beams into single or multiple processing beams. The operational flexibility of the system can be further enhanced through the use of multiple EO modulators and a polarization sensitive beam splitter.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: April 1, 2003
    Assignee: Aculight Corporation
    Inventors: Roy D. Mead, Jeffrey W. Pierce
  • Publication number: 20030048523
    Abstract: A wide variety of Fiber Bragg writing devices comprising solid state lasers are provided. The solid state lasers emit moderate peak-power output beams which are suitable for efficient production of fiber Bragg gratings without causing embrittlement of the optical waveguide. These solid state lasers generate fourth harmonic output beams with wavelengths of approximately 240 nm, in order to match the primary absorption peak in the ultraviolet range for a typical optical waveguide. Some of these solid state lasers comprise a frequency-doubling crystal and a CLBO crystal used in a non-critically phase-matched orientation as a frequency-quadrupling crystal. In such lasers, both the frequency-doubling crystal and frequency-quadrupling crystal are preferably engineered to minimize or eliminate beam “walkoff.
    Type: Application
    Filed: November 19, 2001
    Publication date: March 13, 2003
    Applicant: Aculight Corporation
    Inventors: David C. Gerstenberger, Mark S. Bowers, Dennis D. Lowenthal, Jason N. Farmer, Roy D. Mead, Charles I. Miyake
  • Patent number: 6456756
    Abstract: A method and apparatus for achieving broad gain bandwidth in a Raman amplifier using a wavelength multiplexed pump source is provided. The pump source offers high power, broad bandwidth, and the ability to tailor the pump spectrum, thus providing a means to achieve gain flattening within a specific band of the Raman amplifier. The pump source is preferably comprised of one or more multi-gain element arrays multiplexed together within a single external resonator cavity. Interposed between the array and the resonator cavity output coupler are a collimating element and a diffraction grating. The collimating element can be a refractive optic, a ¼ pitch GRIN lens, or a reflective optic. The diffraction grating can either be transmissive or reflective. The combination of the diffraction grating and the collimating element forces each emitter within the array to lase at a distinct wavelength.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: September 24, 2002
    Assignee: Aculight Corporation
    Inventors: Roy D. Mead, Dennis D. Lowenthal, Jason N. Farmer
  • Publication number: 20020114553
    Abstract: Fiber Bragg writing devices comprising solid state lasers are provided. The solid state lasers comprise optical parametric oscillators and emit moderate peak-power output beams at wavelengths which are suitable for efficient production of fiber Bragg gratings without causing embrittlement of the optical waveguide. These solid state lasers generate output beams with wavelengths of approximately 240 nm, in order to match the primary absorption peak in the ultraviolet range for a typical optical waveguide. Some of these solid state lasers generate tunable wavelength beams using an optical parametric oscillator (“OPO”), then generate harmonics of these tunable beams. Other lasers mix the tunable beam with fixed wavelengths derived from the pump laser to reach the desired output wavelength.
    Type: Application
    Filed: October 29, 2001
    Publication date: August 22, 2002
    Applicant: Aculight Corporation
    Inventors: Roy D. Mead, Charles I. Miyake
  • Publication number: 20020000426
    Abstract: A laser via drilling system, and a method of use thereof, is provided. The apparatus uses two or more laser systems to achieve processing parameter flexibility. The output beams from the independently controlled laser systems are combined using a beam splitter that combines the beams into single or multiple processing beams. The operational flexibility of the system can be further enhanced through the use of multiple EO modulators and a polarization sensitive beam splitter.
    Type: Application
    Filed: January 16, 2001
    Publication date: January 3, 2002
    Inventors: Roy D. Mead, Jeffrey W. Pierce
  • Patent number: 5742626
    Abstract: A solid state laser system producing coherent radiations at deep ultraviolet wavelengths includes a solid state laser producing a first beam having a wavelength near 1 micron. The 1 micron beam is passed to both a harmonic generation stage and to a tunable optical parametric oscillator. The harmonic generation stage is configured to produce a fifth harmonic of the 1 micron beam, while the optical parametric oscillator produces a tunable beam in the near infrared spectrum (e.g., approximately 2.075 micron). The fifth harmonic and the near infrared beams are mixed in a sum frequency generator to produce a highly coherent beam in the deep ultraviolet (e.g., between approximately 180 nm to 213 nm).
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: April 21, 1998
    Assignee: Aculight Corporation
    Inventors: Roy D. Mead, Charles I. Miyake, Dennis D. Lowenthal