Patents by Inventor Roy E. Meade

Roy E. Meade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180061665
    Abstract: A method of forming a semiconductor device structure comprises forming at least one 2D material over a substrate. The at least one 2D material is treated with at least one laser beam having a frequency of electromagnetic radiation corresponding to a resonant frequency of crystalline defects within the at least one 2D material to selectively energize and remove the crystalline defects from the at least one 2D material. Additional methods of forming a semiconductor device structure, and related semiconductor device structures, semiconductor devices, and electronic systems are also described.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Roy E. Meade, Sumeet C. Pandey
  • Patent number: 9865339
    Abstract: Methods of forming and operating phase change memory devices include adjusting an activation energy barrier between a metastable phase and a stable phase of a phase change material in a memory cell. In some embodiments, the activation energy barrier is adjusted by applying stress to the phase change material in the memory cell. Memory devices include a phase change memory cell and a material, structure, or device for applying stress to the phase change material in the memory cell. In some embodiments, a piezoelectric device may be used to apply stress to the phase change material. In additional embodiments, a material having a thermal expansion coefficient greater than that of the phase change material may be positioned to apply stress to the phase change material.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: January 9, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Roy E. Meade
  • Patent number: 9830970
    Abstract: Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, and methods of writing to and reading from a memory cell are described. In one embodiment, a cross-point memory cell includes a word line extending in a first direction, a bit line extending in a second direction different from the first direction, the bit line and the word line crossing without physically contacting each other, and a capacitor formed between the word line and the bit line where such cross. The capacitor comprises a dielectric material configured to prevent DC current from flowing from the word line to the bit line and from the bit line to the word line.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 28, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Roy E. Meade
  • Publication number: 20170315295
    Abstract: Disclosed are a method and structure providing a silicon-on-insulator substrate on which photonic devices are formed and in which a core material of a waveguide is optically decoupled from a support substrate by a shallow trench isolation region.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 2, 2017
    Inventor: Roy E. Meade
  • Patent number: 9543503
    Abstract: A magnetic cell includes a magnetic tunnel junction that comprises magnetic and nonmagnetic materials exhibiting hexagonal crystal structures. The hexagonal crystal structure is enabled by a seed material, proximate to the magnetic tunnel junction, that exhibits a hexagonal crystal structure matching the hexagonal crystal structure of the adjoining magnetic material of the magnetic tunnel junction. In some embodiments, the seed material is formed adjacent to an amorphous foundation material that enables the seed material to be formed at the hexagonal crystal structure. In some embodiments, the magnetic cell includes hexagonal cobalt (h-Co) free and fixed regions and a hexagonal boron nitride (h-BN) tunnel barrier region with a hexagonal zinc (h-Zn) seed region adjacent the h-Co. The structure of the magnetic cell enables high tunnel magnetoresistance, high magnetic anisotropy strength, and low damping. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 10, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Sumeet C. Pandey, Gurtej S. Sandhu
  • Publication number: 20160358641
    Abstract: Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, and methods of writing to and reading from a memory cell are described. In one embodiment, a cross-point memory cell includes a word line extending in a first direction, a bit line extending in a second direction different from the first direction, the bit line and the word line crossing without physically contacting each other, and a capacitor formed between the word line and the bit line where such cross. The capacitor comprises a dielectric material configured to prevent DC current from flowing from the word line to the bit line and from the bit line to the word line.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 8, 2016
    Applicant: Micron Technology, Inc.
    Inventor: Roy E. Meade
  • Patent number: 9419215
    Abstract: Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, and methods of writing to and reading from a memory cell are described. In one embodiment, a cross-point memory cell includes a word line extending in a first direction, a bit line extending in a second direction different from the first direction, the bit line and the word line crossing without physically contacting each other, and a capacitor formed between the word line and the bit line where such cross. The capacitor comprises a dielectric material configured to prevent DC current from flowing from the word line to the bit line and from the bit line to the word line.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: August 16, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Roy E. Meade
  • Patent number: 9406878
    Abstract: Some embodiments include methods of programming a memory cell. A plurality of charge carriers may be moved within the memory cell, with an average charge across the moving charge carriers having an absolute value greater than 2. Some embodiments include methods of forming and programming an ionic-transport-based memory cell. A stack is formed to have programmable material between first and second electrodes. The programmable material has mobile ions which are moved within the programmable material to transform the programmable material from one memory state to another. An average charge across the moving mobile ions has an absolute value greater than 2. Some embodiments include memory cells with programmable material between first and second electrodes. The programmable material includes an aluminum nitride first layer, and includes a second layer containing a mobile ion species in common with the first layer.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: August 2, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Bhaskar Srinivasan, Gurtej S. Sandhu
  • Publication number: 20160163963
    Abstract: A magnetic cell includes a magnetic tunnel junction that comprises magnetic and nonmagnetic materials exhibiting hexagonal crystal structures. The hexagonal crystal structure is enabled by a seed material, proximate to the magnetic tunnel junction, that exhibits a hexagonal crystal structure matching the hexagonal crystal structure of the adjoining magnetic material of the magnetic tunnel junction. In some embodiments, the seed material is formed adjacent to an amorphous foundation material that enables the seed material to be formed at the hexagonal crystal structure. In some embodiments, the magnetic cell includes hexagonal cobalt (h-Co) free and fixed regions and a hexagonal boron nitride (h-BN) tunnel barrier region with a hexagonal zinc (h-Zn) seed region adjacent the h-Co. The structure of the magnetic cell enables high tunnel magnetoresistance, high magnetic anisotropy strength, and low damping. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Inventors: Roy E. Meade, Sumeet C. Pandey, Gurtej S. Sandhu
  • Patent number: 9349803
    Abstract: A semiconducting graphene structure may include a graphene material and a graphene-lattice matching material over at least a portion of the graphene material, wherein the graphene-lattice matching material has a lattice constant within about ±5% of a multiple of the lattice constant or bond length of the graphene material. The semiconducting graphene structure may have an energy band gap of at least about 0.5 eV. A method of modifying an energy band gap of a graphene material may include forming a graphene-lattice matching material over at least a portion of a graphene material, the graphene-lattice matching material having a lattice constant within about ±5% of a multiple of the lattice constant or bond length of the graphene material.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: May 24, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Sumeet C. Pandey
  • Patent number: 9345135
    Abstract: Electronic devices may include a first substrate including circuitry components within the substrate, a microscale bond pad on a surface of the substrate, and a via electrically connecting the microscale bond pad to one of the circuitry components. A distance between centers of at least some adjacent circuitry components of the circuitry components may be a nanoscale distance. A second substrate may be electrically connected to the microscale bond pad. Methods of forming electronic devices may involve positioning a first substrate adjacent to a second substrate and electrically connecting the second substrate to a microscale bond pad on a surface of the first substrate. The first substrate may include circuitry components within the first substrate and a via electrically connecting the microscale bond pad to one of the circuitry components. A distance between centers of at least some adjacent circuitry components of the circuitry components may be a nanoscale distance.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 17, 2016
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Roy E. Meade, Gurtej S. Sandhu
  • Publication number: 20160085153
    Abstract: A method of forming a photonic device structure comprises forming a photoresist over a photonic material over a substrate. The photoresist is exposed to radiation through a gray-tone mask to form at least one photoexposed region and at least one non-photoexposed region of the photoresist. The at least one photoexposed region of the photoresist or the at least one non-photoexposed region of the photoresist is removed to form photoresist features. The photoresist features and unprotected portions of the photonic material are removed to form photonic features. Other methods of forming a photonic device structure, and a method of forming an electronic device are also described.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Roy E. Meade, Gurtej S. Sandhu
  • Patent number: 9269888
    Abstract: A magnetic cell includes a magnetic tunnel junction that comprises magnetic and nonmagnetic materials exhibiting hexagonal crystal structures. The hexagonal crystal structure is enabled by a seed material, proximate to the magnetic tunnel junction, that exhibits a hexagonal crystal structure matching the hexagonal crystal structure of the adjoining magnetic material of the magnetic tunnel junction. In some embodiments, the seed material is formed adjacent to an amorphous foundation material that enables the seed material to be formed at the hexagonal crystal structure. In some embodiments, the magnetic cell includes hexagonal cobalt (h-Co) free and fixed regions and a hexagonal boron nitride (h-BN) tunnel barrier region with a hexagonal zinc (h-Zn) seed region adjacent the h-Co. The structure of the magnetic cell enables high tunnel magnetoresistance, high magnetic anisotropy strength, and low damping. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: February 23, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Sumeet C. Pandey, Gurtej S. Sandhu
  • Patent number: 9236473
    Abstract: A memcapacitor device includes a pair of opposing conductive electrodes. A semiconductive material including mobile dopants within a dielectric and a mobile dopant barrier dielectric material are received between the pair of opposing conductive electrodes. The semiconductive material and the barrier dielectric material are of different composition relative one another which is at least characterized by at least one different atomic element. One of the semiconductive material and the barrier dielectric material is closer to one of the pair of electrodes than is the other of the semiconductive material and the barrier dielectric material. The other of the semiconductive material and the barrier dielectric material is closer to the other of the pair of electrodes than is the one of the semiconductive material and the barrier dielectric material. Other implementations are disclosed, including field effect transistors, memory arrays, and methods.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: January 12, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Gurtej S. Sandhu
  • Publication number: 20150380084
    Abstract: Methods of forming and operating phase change memory devices include adjusting an activation energy barrier between a metastable phase and a stable phase of a phase change material in a memory cell. In some embodiments, the activation energy barrier is adjusted by applying stress to the phase change material in the memory cell. Memory devices include a phase change memory cell and a material, structure, or device for applying stress to the phase change material in the memory cell. In some embodiments, a piezoelectric device may be used to apply stress to the phase change material. In additional embodiments, a material having a thermal expansion coefficient greater than that of the phase change material may be positioned to apply stress to the phase change material.
    Type: Application
    Filed: September 10, 2015
    Publication date: December 31, 2015
    Inventor: Roy E. Meade
  • Publication number: 20150340372
    Abstract: A ferroelectric memory device includes a plurality of memory cells. Each of the memory cells comprises at least one electrode and a ferroelectric crystalline material disposed proximate the at least one electrode. The ferroelectric crystalline material is polarizable by an electric field capable of being generated by electrically charging the at least one electrode. The ferroelectric crystalline material comprises a polar and chiral crystal structure without inversion symmetry through an inversion center. The ferroelectric crystalline material does not consist essentially of an oxide of at least one of hafnium (Hf) and zirconium (Zr).
    Type: Application
    Filed: May 20, 2014
    Publication date: November 26, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sumeet C. Pandey, Lei Bi, Roy E. Meade, Qian Tao, Ashonita A. Chavan
  • Publication number: 20150303372
    Abstract: A magnetic cell includes a magnetic tunnel junction that comprises magnetic and nonmagnetic materials exhibiting hexagonal crystal structures. The hexagonal crystal structure is enabled by a seed material, proximate to the magnetic tunnel junction, that exhibits a hexagonal crystal structure matching the hexagonal crystal structure of the adjoining magnetic material of the magnetic tunnel junction. In some embodiments, the seed material is formed adjacent to an amorphous foundation material that enables the seed material to be formed at the hexagonal crystal structure. In some embodiments, the magnetic cell includes hexagonal cobalt (h-Co) free and fixed regions and a hexagonal boron nitride (h-BN) tunnel barrier region with a hexagonal zinc (h-Zn) seed region adjacent the h-Co. The structure of the magnetic cell enables high tunnel magnetoresistance, high magnetic anisotropy strength, and low damping. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 22, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Roy E. Meade, Sumeet C. Pandey, Gurtej S. Sandhu
  • Patent number: 9135992
    Abstract: Methods of forming and operating phase change memory devices include adjusting an activation energy barrier between a metastable phase and a stable phase of a phase change material in a memory cell. In some embodiments, the activation energy barrier is adjusted by applying stress to the phase change material in the memory cell. Memory devices include a phase change memory cell and a material, structure, or device for applying stress to the phase change material in the memory cell. In some embodiments, a piezoelectric device may be used to apply stress to the phase change material. In additional embodiments, a material having a thermal expansion coefficient greater than that of the phase change material may be positioned to apply stress to the phase change material.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 15, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventor: Roy E. Meade
  • Patent number: 9036401
    Abstract: Methods, devices, and systems associated with memory cell operation are described. One or more methods of operating a memory cell include charging a capacitor coupled to the memory cell to a particular voltage level and programming the memory cell from a first state to a second state by controlling discharge of the capacitor through a resistive switching element of the memory cell.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 19, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, John K. Zahurak
  • Publication number: 20150085565
    Abstract: Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, and methods of writing to and reading from a memory cell are described. In one embodiment, a cross-point memory cell includes a word line extending in a first direction, a bit line extending in a second direction different from the first direction, the bit line and the word line crossing without physically contacting each other, and a capacitor formed between the word line and the bit line where such cross. The capacitor comprises a dielectric material configured to prevent DC current from flowing from the word line to the bit line and from the bit line to the word line.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Inventor: Roy E. Meade