Patents by Inventor Roy Gerald Gordon

Roy Gerald Gordon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220380893
    Abstract: Articles are described including a substrate and a copper halide layer on the substrate, where the interfacial free energy between the substrate and the copper halide layer allows the copper halide layer to form continuously, wherein the copper halide layer conforms to the shape of the substrate. The articles may further include an adhesion layer disposed in-between the substrate and the copper halide layer, where the surface free energy between the adhesion layer and the copper halide layer allows the copper halide layer to form continuously, wherein the copper halide layer or the adhesion layer conform to the shape of the substrate. Also described are methods of forming an article using chemical vapor deposition.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 1, 2022
    Inventors: Christina M. CHANG, Luke M. DAVIS, Roy Gerald GORDON
  • Patent number: 11319452
    Abstract: This disclosure relates to tertiary amine solutions of metal precursors used for chemical vapor deposition or atomic layer deposition. The tertiary amine solutions have many advantages. They dissolve high concentrations of non-polar precursors without reacting with them. They do not supply impurities such as oxygen or halogens to the material being produced, nor do they etch or corrode them. Vaporization rates can be chosen so that the solute and solvent may be evaporated simultaneously, have high flash points, and low flammability. Small droplets may be formed easily which facilitate rapid evaporation without decomposition of he dissolved metal precursor to supply vapors for chemical vapor deposition or atomic layer deposition processes.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 3, 2022
    Assignee: President and Fellows of Harvard College
    Inventor: Roy Gerald Gordon
  • Patent number: 11161857
    Abstract: Compounds are synthesized with bicyclic amidinate ligands attached to one or more metal atoms. These compounds are useful for the synthesis of materials containing metals. Examples include pure metals, metal alloys, metal oxides, metal nitrides, metal phosphides, metal sulfides, metal selenides, metal tellurides, metal borides, metal carbides, metal silicides and metal germanides. Techniques for materials synthesis include vapor deposition (chemical vapor deposition and atomic layer deposition), liquid solution methods (sol-gel and precipitation) and solid-state pyrolysis. Copper metal films are formed on heated substrates by the reaction of copper(I) bicyclic amidinate vapor and hydrogen gas, whereas reaction with water vapor produces copper oxide. Silver and gold films were deposited on surfaces by reaction of their respective bicyclic amidinate vapors with hydrogen gas.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: November 2, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Eugene Beh, Liuchuan Tong
  • Patent number: 10395791
    Abstract: A structure includes a high-strength nanowire core with a first electrically-conductive metal layer bonded to an outer surface thereof. An insulating layer is bonded to an outer surface of the first electrically-conductive metal layer, and a second electrically-conductive metal layer is bonded to an outer surface of the insulating layer. The nanowires are braided into a litz bundle, which reduces electrical losses during transmission of high-frequency current.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 27, 2019
    Assignees: President and Fellows of Harvard College, The Charles Stark Draper Laboratory, Inc.
    Inventors: Roy Gerald Gordon, Amy Elizabeth Duwel
  • Publication number: 20180273550
    Abstract: Compounds are synthesized with bicyclic amidinate ligands attached to one or more metal atoms. These compounds are useful for the synthesis of materials containing metals. Examples include pure metals, metal alloys, metal oxides, metal nitrides, metal phosphides, metal sulfides, metal selenides, metal tellurides, metal borides, metal carbides, metal silicides and metal germanides. Techniques for materials synthesis include vapor deposition (chemical vapor deposition and atomic layer deposition), liquid solution methods (sol-gel and precipitation) and solid-state pyrolysis. Copper metal films are formed on heated substrates by the reaction of copper(I) bicyclic amidinate vapor and hydrogen gas, whereas reaction with water vapor produces copper oxide. Silver and gold films were deposited on surfaces by reaction of their respective bicyclic amidinate vapors with hydrogen gas.
    Type: Application
    Filed: March 27, 2018
    Publication date: September 27, 2018
    Inventors: Roy Gerald GORDON, Eugene BEH, Liuchuan TONG
  • Publication number: 20180254117
    Abstract: A structure includes a high-strength nanowire core with a first electrically-conductive metal layer bonded to an outer surface thereof. An insulating layer is bonded to an outer surface of the first electrically-conductive metal layer, and a second electrically-conductive metal layer is bonded to an outer surface of the insulating layer. The nanowires are braided into a litz bundle, which reduces electrical losses during transmission of high-frequency current.
    Type: Application
    Filed: August 26, 2016
    Publication date: September 6, 2018
    Inventor: Roy Gerald GORDON
  • Patent number: 9905414
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido) hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: February 27, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Jill S. Becker, Dennis Hausmann, Seigi Suh
  • Patent number: 9790378
    Abstract: This disclosure relates to terpene solutions of metal precursors used for chemical vapor deposition, atomic layer deposition, spray pyrolysis or misted deposition. The terpenes do not supply impurities such as oxygen or halogens to the material being produced, nor do they etch or corrode them. In spray pyrolysis or misted deposition, small droplets provide uniform coating. Terpenes have high flash points and low flammability, reducing the risk of fires. Terpenes have low toxicity and are biodegradable. They are available in large amounts from renewable, natural plant sources, and are low in cost.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 17, 2017
    Assignee: President and Fellows of Harvard College
    Inventor: Roy Gerald Gordon
  • Patent number: 9663546
    Abstract: Compounds, and oligomers of the compounds, are synthesized with cyclic amine ligands attached to a metal atom. These compounds are useful for the synthesis of materials containing metals. Examples include pure metals, metal alloys, metal oxides, metal nitrides, metal phosphides, metal sulfides, metal selenides, metal tellurides, metal borides, metal carbides, metal silicides and metal germanides. Techniques for materials synthesis include vapor deposition (chemical vapor deposition and atomic layer deposition), liquid solution methods (sol-gel and precipitation) and solid-state pyrolysis. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices. The films have very uniform thickness and high step coverage in narrow holes.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: May 30, 2017
    Assignee: President and Fellows of Harvard College
    Inventor: Roy Gerald Gordon
  • Publication number: 20170012001
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Inventors: Roy Gerald GORDON, Harish B. BHANDARI, Yeung AU, Youbo LIN
  • Publication number: 20160268121
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido) hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Roy Gerald GORDON, Jill S. BECKER, Dennis HAUSMANN, Seigi SUH
  • Patent number: 9390971
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: July 12, 2016
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Harish B. Bhandari, Yeung Au, Youbo Lin
  • Publication number: 20160152649
    Abstract: Compounds, and oligomers of the compounds, are synthesized with cyclic amine ligands attached to a metal atom. These compounds are useful for the synthesis of materials containing metals. Examples include pure metals, metal alloys, metal oxides, metal nitrides, metal phosphides, metal sulfides, metal selenides, metal tellurides, metal borides, metal carbides, metal silicides and metal germanides. Techniques for materials synthesis include vapor deposition (chemical vapor deposition and atomic layer deposition), liquid solution methods (sol-gel and precipitation) and solid-state pyrolysis. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices. The films have very uniform thickness and high step coverage in narrow holes.
    Type: Application
    Filed: July 25, 2014
    Publication date: June 2, 2016
    Inventor: Roy Gerald GORDON
  • Publication number: 20160115328
    Abstract: This disclosure relates to tertiary amine solutions of metal precursors used for chemical vapor deposition or atomic layer deposition. The tertiary amine solutions have many advantages. They dissolve high concentrations of non-polar precursors without reacting with them. They do not supply impurities such as oxygen or halogens to the material being produced, nor do they etch or corrode them. Vaporization rates can be chosen so that the solute and solvent may be evaporated simultaneously, have high flash points, and low flammability. Small droplets may be formed easily which facilitate rapid evaporation without decomposition of he dissolved metal precursor to supply vapors for chemical vapor deposition or atomic layer deposition processes.
    Type: Application
    Filed: June 6, 2014
    Publication date: April 28, 2016
    Inventor: Roy Gerald GORDON
  • Publication number: 20160111276
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 21, 2016
    Inventors: Roy Gerald GORDON, Jill S. BECKER, Dennis HAUSMANN, Seigi SUH
  • Publication number: 20160087066
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Roy Gerald GORDON, Jill S. BECKER, Dennis HAUSMANN, Seigi SUH
  • Publication number: 20150325474
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Application
    Filed: July 8, 2015
    Publication date: November 12, 2015
    Inventors: Roy Gerald GORDON, Harish B. BHANDARI, Yeung AU, Youbo LIN
  • Patent number: 9112005
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 18, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Harish B. Bhandari, Yeung Au, Youbo Lin
  • Patent number: 9029189
    Abstract: Bicyclic guanidine compounds are described. Metal bicyclic guanidinate and its use in vapor deposition processes to deposit a metal-containing thin film are also described. Methods of making alkaline earth metal N,N?dialkylacetamidinates or bicyclic guanidinates including dissolution of alkaline earth metal into liquid ammonia followed by addition of a solution of an amidine or guanidine ligand in the free base from are provided.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 12, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Leonard Neil Jacques Rodriguez
  • Publication number: 20150118395
    Abstract: Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 30, 2015
    Inventors: Roy Gerald GORDON, Jill S. BECKER, Dennis HAUSMANN, Seigi SUH