Patents by Inventor Roy James Primus

Roy James Primus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9863342
    Abstract: Various methods and systems are provided for adjusting an air-fuel ratio for combustion in an engine. In one embodiment, a method for an engine (e.g., a method for controlling an engine system) comprises responding to a sensed change in a load on the engine, or indications of engine knock or misfire, by one or more of: altering a speed of the engine, adjusting a fueling flow rate into at least one cylinder of the engine, and adjusting a position of a valve in a bypass passage configured to direct compressed intake air away from cylinders of the engine to obtain a determined air-fuel ratio; and thereby maintaining an air-fuel ratio in a determined range.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 9, 2018
    Assignee: General Electric Company
    Inventors: Chetan Sharadchandra Tulapurkar, Manoj Gokhale, Roy James Primus, Leslie Orin Trask, James Robert Mischler, Adam Edgar Klingbeil, Thomas Michael Lavertu
  • Publication number: 20180003070
    Abstract: Various methods and systems are provided for generating exhaust energy and converting exhaust energy to electrical energy while an engine is not running. In one example, a system for an engine comprises: a first turbocharger including a first compressor driven by a first turbine, the first turbine disposed in an exhaust of the engine; a fuel burner fluidly coupled to the exhaust upstream of the first turbine; a generator coupled to one of the first turbine or an auxiliary, second turbine fluidly coupled to the exhaust downstream of the fuel burner; and one or more bypass valves configured to adjust a flow of air that bypasses the engine and is delivered to the fuel burner.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: General Electric Company
    Inventors: James Robert Mischler, Roy James Primus, Thomas Michael Lavertu
  • Publication number: 20170284318
    Abstract: A system in one embodiment includes at least one cylinder, a supplemental boost supply, and a supply line. The at least one cylinder is configured for use in a reciprocating internal combustion engine, and includes a combustion portion and a crank portion on opposite sides of a piston. The at least one cylinder also includes an intake port and an exhaust port in fluid communication with the combustion portion. The supplemental boost supply is configured to provide a supplemental air supply to the combustion portion of the engine when the engine is idling to increase pressure in the combustion portion. The supply line couples the supplemental boost supply to the intake port.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventors: Adam Edgar Klingbeil, Roy James Primus, Edward Joseph Hall
  • Publication number: 20170254286
    Abstract: A control system for an engine includes one or more processors configured to determine when a change in one or more of oxygen or fuel supplied to an engine. The one or more processors also are configured to, responsive to determining the change in oxygen and/or fuel supplied to an engine, direct one or more fuel injectors of the engine to begin injecting fuel into one or more cylinders of the engine during both a first fuel injection and a second fuel injection during each cycle of a multi-stroke engine cycle of the one or more cylinders.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 7, 2017
    Inventors: Roy James Primus, Thomas Michael Lavertu, Adam Edgar Klingbeil
  • Patent number: 9695723
    Abstract: Various methods and systems are provided for a combustion system of an engine. In one example, a combustion system comprises a piston crown bowl with a central apex, a combustion chamber operable at a compression ratio in a range of from about 13:1 to about 17:1, the combustion chamber formed at least partially by the piston crown bowl, and a fuel injector with a nozzle extending into a central portion of the combustion chamber that is operable to inject fuel directly into the combustion chamber, the nozzle defining a number of apertures that is in a range of from six to ten.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: Barry Record, Roy James Primus, Venu Gummadavelli, James Henry Yager, Omowoleola Chukwuemeka Akinyemi, Adam Edgar Klingbeil, Thomas Michael Lavertu
  • Publication number: 20170089278
    Abstract: Various methods and systems are provided for adjusting an air-fuel ratio for combustion in an engine. In one embodiment, a method for an engine (e.g., a method for controlling an engine system) comprises responding to a sensed change in a load on the engine, or indications of engine knock or misfire, by one or more of: altering a speed of the engine, adjusting a fueling flow rate into at least one cylinder of the engine, and adjusting a position of a valve in a bypass passage configured to direct compressed intake air away from cylinders of the engine to obtain a determined air-fuel ratio; and thereby maintaining an air-fuel ratio in a determined range.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: Chetan Sharadchandra Tulapurkar, Manoj Gokhale, Roy James Primus, Leslie Orin Trask, James Robert Mischler, Adam Edgar Klingbeil, Thomas Michael Lavertu
  • Publication number: 20160333814
    Abstract: Fuel injector wear compensation methodologies for use with internal combustion engines that alter the injection schedule over the life of the fuel injector(s) by using methods that conduct a primary injection of fuel in the engine (primary fuel event), per an injection schedule within an engine cycle; compare a measured engine parameter(s) to a reference value(s); and then alter the injection schedule applied to the engine, based on the comparing. Another method comprises: during injection events, inject a first fuel in a combustion chamber of the engine; measure an engine parameter(s) of the engine during operation; compare the engine parameter(s) to a reference value(s); add a post injection event of a second fuel during the injection events, based on the comparison. The methods can be applied with single or dual fuels.
    Type: Application
    Filed: March 31, 2016
    Publication date: November 17, 2016
    Inventors: Thomas Michael Lavertu, Adam Edgar Klingbeil, Roy James Primus
  • Publication number: 20160319742
    Abstract: A system includes an engine coupled with a primary shaft that drives a first electric generator for generating electrical power via a gear subsystem, The system also includes a turbocharger assembly having at least one gas turbine engine configured for driving the primary shaft and coupled in parallel with the engine. The turbocharger assembly includes multiple compressors configured to provide a flow of compressed fluid into both the engine and the at least one gas turbine engine and multiple turbines configured to utilize exhausts from both the engine and the one gas turbine for driving the primary shaft. Further, the system includes a controller configured to operate a plurality of valves for controlling optimal intake fluid pressure into the engine and the turbocharger assembly and fuel injections into the engine and the at least one gas turbine engine.
    Type: Application
    Filed: September 18, 2014
    Publication date: November 3, 2016
    Inventors: Roy James Primus, Adam Edgar Klingbeil, Narendra Digamber Joshi, Omowoleola Chukwuemeka Akinyemi, Thomas Michael Lavertu
  • Publication number: 20160069287
    Abstract: A method involves receiving a plurality of engine parameters and a sensed ambient operating condition during operation of an engine and determining a current substitution rate based on the plurality of engine parameter. The method also involves determining at least one of a pre-combustion temperature and an end gas temperature based on the plurality of engine parameters and the sensed ambient operating condition and determining a maximum substitution rate based on at least one of the pre-combustion temperature and the end gas temperature. The method further involves comparing the current substitution rate with the maximum substitution rate and controlling at least one engine parameter among the plurality of engine parameters if the current substitution rate is different from the maximum substitution rate so as to generate the current substitution rate to less than or equal to the maximum substitution rate.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Inventors: Thomas Michael Lavertu, Adam Edgar Klingbeil, Omowoleola Chukwuemeka Akinyemi, Victor Manuel Salazar, Roy James Primus
  • Publication number: 20160010576
    Abstract: A method includes controlling an engine speed based on: intake manifold air temperature and/or intake manifold pressure one, or more, of the following data parameters: an engine load as a function of a fuel level, a fuel injecting timing, an intake oxygen concentration, a constituent concentration from the exhaust gas flow, an engine power, and an engine torque. The method also recirculates a portion of the exhaust gas flow to the combustion cylinders of the engine via a recirculation channel, as a function of intake manifold temperature and/or intake manifold pressure at which the engine is operated. An engine system, other methods, and a non-transitory computer readable medium encoded with a program, to enable a processor-based control unit to control aspects of the engine are also disclosed.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Roy James Primus, Omowoleola Chukwuemeka Akinyemi, Thomas Michael Lavertu, James Robert Mischler, Venu Gummadavelli Gupta
  • Patent number: 9140179
    Abstract: A method includes combusting air within a plurality of cylinders of an internal combustion engine by injecting a fuel into the plurality of cylinders. The method further includes expanding a first portion of an exhaust gas generated from the plurality of combustion cylinders via a turbine. The method further includes controlling at least one of feeding a second portion of the exhaust gas via an exhaust channel bypassing the turbine; and recirculating a third portion of the exhaust gas to the plurality of combustion cylinders via a recirculation channel, as a function of an intake manifold air temperature and pressure at which the engine is operated.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 22, 2015
    Assignee: General Electric Company
    Inventors: Roy James Primus, Omowoleola Chukwuemeka Akinyemi, Thomas Michael Lavertu, James Robert Mischler, Venu Gopal Gummadavelli
  • Publication number: 20150198070
    Abstract: Various methods and systems are provided for a combustion system of an engine. In one example, a combustion system comprises a piston crown bowl with a central apex, a combustion chamber operable at a compression ratio in a range of from about 13:1 to about 17:1, the combustion chamber formed at least partially by the piston crown bowl, and a fuel injector with a nozzle extending into a central portion of the combustion chamber that is operable to inject fuel directly into the combustion chamber, the nozzle defining a number of apertures that is in a range of from six to ten.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: General Electric Company
    Inventors: Barry Record, Roy James Primus, Venu Gummadavelli, James Henry Yager, Omowoleola Chukwuemeka Akinyemi, Adam Edgar Klingbeil, Thomas Michael Lavertu
  • Publication number: 20150176509
    Abstract: A method includes receiving a plurality of signals from a plurality of sensors coupled to a dual fuel engine. The method further includes altering an actual speed of the dual fuel engine to obtain a predetermined air-fuel ratio in response to a changed operating condition of the dual fuel engine determined based on the plurality of signals, so as to maintain operation of the dual fuel engine between knock and misfire conditions.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Applicant: General Electric Company
    Inventors: Thomas Michael Lavertu, Roy James Primus, Adam Edgar Klingbeil, James Robert Mischler
  • Publication number: 20140358404
    Abstract: A method of operating an internal combustion engine is provided. The method includes combusting a mixture of fresh air and fuel within multiple cylinders. The method also includes directing a first portion of exhaust gases into a first-stage turbine and a second-stage turbine of a turbocharger for expanding the exhaust gases, directing a second portion of exhaust gases from the exhaust manifold via an exhaust channel bypassing the first-stage turbine and recirculating a third portion of exhaust gases into an intake manifold after mixing with fresh air. The method includes controlling at least one of: reducing a normal engine speed at each engine power setting while maintaining constant engine power level by increasing a fuel injection per cycle; concurrently increasing a flow rate of the third portion of exhaust gas during recirculation; and advancing a fuel injection timing for reducing emission levels that meets Tier 4 requirements.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Thomas Michael Lavertu, Adam Edgar Klingbeil, Roy James Primus, Omowoleola Chukwuemeka Akinyemi, Venu Gopal Gummadavelli, Barry Allen Record, James Henry Yager
  • Patent number: 8857156
    Abstract: In accordance with the embodiments of the present invention, an engine is disclosed. The engine includes at least one donor cylinder and at least one non-donor cylinder coupled to an intake manifold feeding intake air and an exhaust manifold. The exhaust manifold is configured to carry an engine exhaust emission from the donor cylinder and the non-donor cylinder. The engine also includes an exhaust gas recirculation manifold extending from the donor cylinder to the intake manifold for recirculating a donor cylinder exhaust emission from the donor cylinder to the donor, and non-donor cylinders via the intake manifold. The engine further includes an after-treatment system and a sensor configured to sense a temperature of the engine exhaust emission and a device configured to receive a sensing signal from the sensor and to control a parameter of the engine and a component of the engine in response to the sensing signal.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Roy James Primus, Luke Michael Henry, Paul Gerard Nistler, James Robert Mischler, John Stephen Roth
  • Patent number: 8794212
    Abstract: A method of operating an engine comprises introducing into a cylinder volume a non-compression-combustible fuel, such as natural gas, a compression-combustible fuel, such as diesel, and an oxidant and mixing the components for greater than about 275 microseconds, prior to compression combusting the compression-combustible fuel. The mixing may be done such that the two fuels are at least partially homogenized in the cylinder volume. By mixing, or premixing, the two fuels prior to combustion, the compression-combustible fuel is then simultaneously combusted via compression at multiple ignition points in the volume. The second, non-compression-combustible fuel is ignited in response to the combustion of the first fuel. An engine that enables the various methods is also disclosed.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: August 5, 2014
    Assignee: General Electric Company
    Inventors: Adam Edgar Klingbeil, Roy James Primus, David James Walker
  • Publication number: 20140109571
    Abstract: A method includes combusting air within a plurality of cylinders of an internal combustion engine by injecting a fuel into the plurality of cylinders. The method further includes expanding a first portion of an exhaust gas generated from the plurality of combustion cylinders via a turbine. The method further includes controlling at least one of feeding a second portion of the exhaust gas via an exhaust channel bypassing the turbine; and recirculating a third portion of the exhaust gas to the plurality of combustion cylinders via a recirculation channel, as a function of an intake manifold air temperature and pressure at which the engine is operated.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: General Electric Company
    Inventors: Roy James Primus, Omowoleola Chukwuemeka Akinyemi, Thomas Michael Lavertu, James Robert Mischler, Venu Gopal Gummadavelli
  • Publication number: 20130283766
    Abstract: In accordance with the embodiments of the present invention, an engine is disclosed. The engine includes at least one donor cylinder and at least one non-donor cylinder coupled to an intake manifold feeding intake air and an exhaust manifold. The exhaust manifold is configured to carry an engine exhaust emission from the donor cylinder and the non-donor cylinder. The engine also includes an exhaust gas recirculation manifold extending from the donor cylinder to the intake manifold for recirculating a donor cylinder exhaust emission from the donor cylinder to the donor, and non-donor cylinders via the intake manifold. The engine further includes an after-treatment system and a sensor configured to sense a temperature of the engine exhaust emission and a device configured to receive a sensing signal from the sensor and to control a parameter of the engine and a component of the engine in response to the sensing signal.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Roy James Primus, Luke Michael Henry, Paul Gerard Nistler, James Robert Mischler, John Stephen Roth
  • Patent number: 8375714
    Abstract: A method of operating a turbocharged system includes controlling speed of a turbocharger and substantially eliminating choke of a compressor coupled to a turbine by adjusting exhaust flow through a turbine wastegate, or by adjusting airflow through a compressor recirculation valve, or by adjusting a combination thereof in response to variance in parameters including compressor inlet temperature, compressor inlet pressure, and turbocharger speed.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Manoj Prakash Gokhale, Roy James Primus, Kendall Roger Swenson
  • Publication number: 20130025573
    Abstract: A method of operating an engine comprises introducing into a cylinder volume a non-compression-combustible fuel, such as natural gas, a compression-combustible fuel, such as diesel, and an oxidant and mixing the components for greater than about 275 microseconds, prior to compression combusting the compression-combustible fuel. The mixing may be done such that the two fuels are at least partially homogenized in the cylinder volume. By mixing, or premixing, the two fuels prior to combustion, the compression-combustible fuel is then simultaneously combusted via compression at multiple ignition points in the volume. The second, non-compression-combustible fuel is ignited in response to the combustion of the first fuel. An engine that enables the various methods is also disclosed.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Adam Edgar Klingbeil, Roy James Primus, David James Walker