Patents by Inventor Roy Matthew Patterson

Roy Matthew Patterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960165
    Abstract: A display device comprises a waveguide configured to guide light in a lateral direction parallel to an output surface of the waveguide. The waveguide is further configured to outcouple the guided light through the output surface. The display device additionally comprises a broadband adaptive lens assembly configured to incouple and to diffract therethrough the outcoupled light from the waveguide. The broadband adaptive lens assembly comprises a first waveplate lens comprising a liquid crystal (LC) layer arranged such that the waveplate lens has birefringence (?n) that varies in a radially outward direction from a central region of the first waveplate lens and configured to diffract the outcoupled light at a diffraction efficiency greater than 90% within a wavelength range including at least 450 nm to 630 nm. The broadband adaptive lens assembly is configured to be selectively switched between a plurality of states having different optical powers.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: April 16, 2024
    Assignee: MAGIC LEAP, INC.
    Inventors: Chulwoo Oh, Ravi Kumar Komanduri, Roy Matthew Patterson, Charles Scott Carden, Michael Nevin Miller, Vikramjit Singh
  • Patent number: 11921290
    Abstract: A display device includes a waveguide assembly comprising a waveguide configured to outcouple light out of a major surface of the waveguide to form an image in the eyes of a user. An adaptive lens assembly has a major surface facing the output surface and a waveplate lens and a switchable waveplate assembly. The switchable waveplate assembly includes quarter-wave plates on opposing sides of a switchable liquid crystal layer, and electrodes on the quarter-wave plates in the volume between the quarter-wave plates. The electrodes can selectively establish an electric field and may serve as an alignment structure for molecules of the liquid crystal layer. Portions of the adaptive lens assembly may be manufactured by roll-to-roll processing in which a substrate roll is unwound, and alignment layers and liquid crystal layers are formed on the substrate as it moves towards a second roller, to be wound on that second roller.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: March 5, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Roy Matthew Patterson, Chulwoo Oh, Ravi Kumar Komanduri, Charles Scott Carden, Michael Nevin Miller, Vikramjit Singh, Shuqiang Yang
  • Patent number: 11886000
    Abstract: In some embodiments, a head-mounted, near-eye display system comprises a stack of waveguides having integral spacers separating the waveguides. The waveguides may each include diffractive optical elements that are formed simultaneously with the spacers by imprinting. The spacers are disposed on one major surface of each of the waveguides and indentations are provided on an opposite major surface of each of the waveguides. The indentations are sized and positioned to align with the spacers, thereby forming a self-aligned stack of waveguides. Tops of the spacers may be provided with light scattering features, anti-reflective coatings, and/or light absorbing adhesive to prevent light leakage between the waveguides. As seen in a top-down view, the spacers may be elongated along the same axis as the diffractive optical elements. The waveguides may include structures (e.g.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: January 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Victor Kai Liu, Roy Matthew Patterson, David Carl Jurbergs, Mohammadreza Khorasaninejad, Ling Li, Michael Nevin Miller, Charles Scott Carden
  • Patent number: 11846890
    Abstract: An imprint lithography system includes: a first chuck configured to support a first substrate; a first bushing surrounding the first chuck and configured to pneumatically suspend the first chuck laterally within the first bushing; one or more supportive mechanisms disposed beneath the first chuck and configured to support the first chuck vertically within the first bushing, wherein the first chuck is configured to be forced in a downward direction against first vertical resistive forces provided by the one or more supportive mechanisms, while the first chuck is suspended laterally within the first bushing and while the first chuck is maintained in the first fixed rotational orientation.
    Type: Grant
    Filed: January 26, 2023
    Date of Patent: December 19, 2023
    Assignee: Molecular Imprints, Inc.
    Inventors: Roy Matthew Patterson, Charles Scott Carden, Satish Sadam
  • Publication number: 20230373174
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Patent number: 11787138
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Publication number: 20230296993
    Abstract: Systems and methods for managing multi-objective alignments in imprinting (e.g., single-sided or double-sided) are provided. An example system includes rollers for moving a template roll, a stage for holding a substrate, a dispenser for dispensing resist on the substrate, a light source for curing the resist to form an imprint on the substrate when a template of the template roll is pressed into the resist on the substrate, a first inspection system for registering a fiducial mark of the template to determine a template offset, a second inspection system for registering the imprint on the substrate to determine a wafer registration offset between a target location and an actual location of the imprint, and a controller for controlling to move the substrate with the resist below the template based on the template offset, and determine an overlay bias of the imprint on the substrate based on the wafer registration offset.
    Type: Application
    Filed: August 6, 2021
    Publication date: September 21, 2023
    Inventors: Jeremy Lee SEVIER, Satish SADAM, Joseph Michael IMHOF, Kang LUO, Kangkang WANG, Roy Matthew PATTERSON, Qizhen XUE, Brett William BEST, Charles Scott CARDEN, Matthew S. SHAFRAN, Michael Nevin MILLER
  • Patent number: 11679533
    Abstract: In an example method of forming an optical film for an eyepiece, a curable material is dispensed into a space between a first and a second mold surface. A position of the first mold surface relative to the second mold surface is measured using a plurality of sensors. Each sensor measures a respective relative distance along a respective measurement axis between a respective point on a planar portion of the first mold surface and a respective point on a planar portion of the second mold surface. The measurement axes are parallel to each other, and the points define corresponding triangles on the first and second mold surfaces, respectively. The position of the first mold surface is adjusted relative to the second mold surface based on the measured position, and the curable material is cured to form the optical film.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: June 20, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Jeremy Lee Sevier, Matthew S. Shafran, Satish Sadam, Roy Matthew Patterson, Kangkang Wang, Chieh Chang, Charles Scott Carden
  • Publication number: 20230176493
    Abstract: An imprint lithography system includes: a first chuck configured to support a first substrate; a first bushing surrounding the first chuck and configured to pneumatically suspend the first chuck laterally within the first bushing; one or more supportive mechanisms disposed beneath the first chuck and configured to support the first chuck vertically within the first bushing, wherein the first chuck is configured to be forced in a downward direction against first vertical resistive forces provided by the one or more supportive mechanisms, while the first chuck is suspended laterally within the first bushing and while the first chuck is maintained in the first fixed rotational orientation.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 8, 2023
    Inventors: Roy Matthew Patterson, Charles Scott Carden, Satish Sadam
  • Patent number: 11567418
    Abstract: An imprint lithography method for positioning substrates includes supporting first and second substrates respectively atop first and second chucks, pneumatically suspending the first and second chucks laterally within first and second bushings, supporting the first and second chucks vertically within the first and second bushings, maintaining the first and second chucks respectively in first and second fixed rotational orientations, and forcing the first and second chucks in a downward direction independently of each other respectively against first and second vertical resistive forces until first and second top surfaces of the first and second substrates are coplanar, while maintaining the first and second chucks suspended laterally within the first and second bushings and while maintaining the first and second chucks in the first and second fixed rotational orientations.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: January 31, 2023
    Assignee: Molecular Imprints, Inc.
    Inventors: Roy Matthew Patterson, Charles Scott Carden, Satish Sadam
  • Publication number: 20220242076
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Publication number: 20220146888
    Abstract: A display device comprises a waveguide configured to guide light in a lateral direction parallel to an output surface of the waveguide. The waveguide is further configured to outcouple the guided light through the output surface. The display device additionally comprises a broadband adaptive lens assembly configured to incouple and to diffract therethrough the outcoupled light from the waveguide. The broadband adaptive lens assembly comprises a first waveplate lens comprising a liquid crystal (LC) layer arranged such that the waveplate lens has birefringence (?n) that varies in a radially outward direction from a central region of the first waveplate lens and configured to diffract the outcoupled light at a diffraction efficiency greater than 90% within a wavelength range including at least 450 nm to 630 nm. The broadband adaptive lens assembly is configured to be selectively switched between a plurality of states having different optical powers.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Chulwoo Oh, Ravi Kumar Komanduri, Roy Matthew Patterson, Charles Scott Carden, Michael Nevin Miller, Vikramjit Singh
  • Patent number: 11320591
    Abstract: In an example method of forming a waveguide film, a photocurable material is dispensed into a space between a first mold portion and a second mold portion opposite the first mold portion. Further, a relative separation between a surface of the first mold portion with respect to a surface of the second mold portion opposing the surface of the first mold portion is adjusted. The photocurable material in the space is irradiated with radiation suitable for photocuring the photocurable material to form a cured waveguide film. Concurrent to irradiating the photocurable material, the relative separation between the surface of the first mold portion and the surface of the second mold portion is varied and/or an intensity of the radiation irradiating the photocurable material is varied.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: May 3, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Michael Anthony Klug, Charles Scott Carden, Roy Matthew Patterson, Matthew S. Shafran
  • Patent number: 11318692
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 3, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Patent number: 11298856
    Abstract: An example system is configured to photocure a photocurable material to form a polymer film. The system includes a first chuck configured to support a first substantially planar mold, a second chuck configured to support a second substantially planar mold, and an actuable stage coupled to the first chuck and/or the second chuck. The actuable stage is configured to position the first chuck and/or the second chuck so that the first and second molds are separated by a gap. The system also includes a sensor arrangement for obtaining measurement information indicative of a distance between the first and second molds and/or a pressure between the first and second chucks at each of at least three locations. The system also includes a control module configured control the gap between the first and second molds based on the measurement information.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: April 12, 2022
    Assignee: Molecular Imprints, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Roy Matthew Patterson, Matthew S. Shafran, Christopher John Fleckenstein, Charles Scott Carden
  • Patent number: 11231612
    Abstract: A display device comprises a waveguide configured to guide light in a lateral direction parallel to an output surface of the waveguide. The waveguide is further configured to outcouple the guided light through the output surface. The display device additionally comprises a broadband adaptive lens assembly configured to incouple and to diffract therethrough the outcoupled light from the waveguide. The broadband adaptive lens assembly comprises a first waveplate lens comprising a liquid crystal (LC) layer arranged such that the waveplate lens has birefringence (?n) that varies in a radially outward direction from a central region of the first waveplate lens and configured to diffract the outcoupled light at a diffraction efficiency greater than 90% within a wavelength range including at least 450 nm to 630 nm. The broadband adaptive lens assembly is configured to be selectively switched between a plurality of states having different optical powers.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 25, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Chulwoo Oh, Ravi Kumar Komanduri, Roy Matthew Patterson, Charles Scott Carden, Michael Nevin Miller, Vikramjit Singh
  • Patent number: 11195739
    Abstract: Methods, systems, and apparatus for a substrate transfer method, including positioning a tray handler device in a first position with i) cutouts of an aperture of the first tray in superimposition with respective pedestals of a pedestal platform and ii) a distal end of the pedestals extending away from a top surface of the first tray; increasing a distance between the top surface of the first tray and a top surface of the pedestal platform to transfer a first substrate from the pedestals to the tabs defined by the aperture of the first tray, while concurrently engaging the second tray handler with the second tray; and increasing a distance between the top surface of the second tray and the bottom surface of a chuck to transfer a second substrate from the chuck to the tabs defined by the second tray.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: December 7, 2021
    Assignee: Molecular Imprints, Inc.
    Inventors: Roy Matthew Patterson, Yaseer A. Ahamed
  • Publication number: 20210283806
    Abstract: In an example method of forming an optical film for an eyepiece, a curable material is dispensed into a space between a first and a second mold surface. A position of the first mold surface relative to the second mold surface is measured using a plurality of sensors. Each sensor measures a respective relative distance along a respective measurement axis between a respective point on a planar portion of the first mold surface and a respective point on a planar portion of the second mold surface. The measurement axes are parallel to each other, and the points define corresponding triangles on the first and second mold surfaces, respectively. The position of the first mold surface is adjusted relative to the second mold surface based on the measured position, and the curable material is cured to form the optical film.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 16, 2021
    Inventors: Jeremy Lee Sevier, Matthew S. Shafran, Satish Sadam, Roy Matthew Patterson, Kangkang Wang, Chieh Chang, Charles Scott Carden
  • Publication number: 20210271025
    Abstract: In an example method of forming a waveguide film, a photocurable material is dispensed into a space between a first mold portion and a second mold portion opposite the first mold portion. Further, a relative separation between a surface of the first mold portion with respect to a surface of the second mold portion opposing the surface of the first mold portion is adjusted. The photocurable material in the space is irradiated with radiation suitable for photocuring the photocurable material to form a cured waveguide film. Concurrent to irradiating the photocurable material, the relative separation between the surface of the first mold portion and the surface of the second mold portion is varied and/or an intensity of the radiation irradiating the photocurable material is varied.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Michael Anthony Klug, Charles Scott Carden, Roy Matthew Patterson, Matthew S. Shafran
  • Publication number: 20210173317
    Abstract: An imprint lithography method for positioning substrates includes supporting first and second substrates respectively atop first and second chucks, pneumatically suspending the first and second chucks laterally within first and second bushings, supporting the first and second chucks vertically within the first and second bushings, maintaining the first and second chucks respectively in first and second fixed rotational orientations, and forcing the first and second chucks in a downward direction independently of each other respectively against first and second vertical resistive forces until first and second top surfaces of the first and second substrates are coplanar, while maintaining the first and second chucks suspended laterally within the first and second bushings and while maintaining the first and second chucks in the first and second fixed rotational orientations.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Roy Matthew Patterson, Charles Scott Carden, Satish Sadam