Patents by Inventor Roy Ray Odle

Roy Ray Odle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8524854
    Abstract: A polyetherimide having an OH content that is greater than 0 and equal or less than 100 ppm; a Relative Thermal Index that is greater than or equal to 170° C.; and a chlorine content that is greater than 0 ppm is disclosed herein. A method for preparing the polyetherimide is also disclosed.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: September 3, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Hendrich Chiong, Thomas Link Guggenheim, Farid Fouad Khouri, Matthew L. Kuhlman, Miguel Angel Navarro de Castro, Roy Ray Odle, Brennan A. Smith
  • Patent number: 8492474
    Abstract: Methods of making miscible and compatible immiscible polymer blends are disclosed. The polymer blends have a polyimide as a component. The miscible polymer blends have a single glass transition temperature. The compatible polymer blends have two glass transition temperatures. The polymer blends may optionally include one or more fillers.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: July 23, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Robert Russell Gallucci, Tara J. Mullen, Roy Ray Odle, Kapil Chandrakant Sheth, James Mitchell White
  • Publication number: 20130109831
    Abstract: A poly(aryl ether sulfone) comprises units of formula (I): wherein Ar1 is a divalent C6-C15 aromatic group, Ar2 is a divalent C6-C15 aromatic group, Ar3 is a divalent C6-C15 aromatic group, and n is greater than 1; and a terminal group of formula (II) derived from a monofunctional phenoxide wherein is X is a hydrogen atom or an organic substituent having from 1 to 20 carbon atoms; wherein the poly(aryl ether sulfone) has a hydroxyl group content greater than 0 and less than 50 parts per million (ppm), based on the poly(aryl ether sulfone) weight, a glass transition temperature of 180 to 290° C., a weight average molecular weight of 20,000 to 100,000, a halogen content of greater than 0 and less than 3000 ppm based on the poly(aryl ether sulfone) weight. The poly(aryl ether sulfone) is free of methoxy groups.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Eric Lee Lutz, William Hoy Heath, Roy Ray Odle, Thomas Link Guggenheim
  • Patent number: 8426533
    Abstract: The present invention provides a process for measuring and controlling chemical reactions that produce thermoplastic polymers by utilizing a stoichiometry correction during a reaction cycle to produce thermoplastic resins with desired properties. The thermoplastic polymer is made from at least one first monomer having a first reactive end group and at least one second monomer having a second reactive end group by reaction of the first reactive end group with the second reactive end group and has a glass transition temperature of greater than 130° C.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 23, 2013
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Roy Ray Odle, Vijay Gopalakrishnan, Narayan Ramesh, Albert Santo Stella, Lioba Maria Kloppenburg, David Bruce Hall
  • Patent number: 8278383
    Abstract: A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 2, 2012
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Kwok Pong Chan, Sarah Elizabeth Genovese, Erik C. Hagberg, David Bruce Hall, John Lester Maxam, Tara J. Mullen, Roy Ray Odle, Albert Santo Stella, James Mitchell White
  • Publication number: 20120190791
    Abstract: A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 26, 2012
    Applicant: SABIC INNOVATIVE PLASTICS IP BV
    Inventors: Kwok Pong Chan, Sarah Elizabeth Genovese, Erik C. Hagberg, David Bruce Hall, John Lester Maxam, Tara J. Mullen, Roy Ray Odle, Albert Santo Stella, James Mitchell White
  • Patent number: 8158243
    Abstract: A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 17, 2012
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Kwok Pong Chan, Sarah Elizabeth Genovese, Erik C. Hagberg, David Bruce Hall, John Lester Maxam, Tara J. Mullen, Roy Ray Odle, Albert Santo Stella, James Mitchell White
  • Patent number: 8080671
    Abstract: The production of low color polyetherimides, including its intermediates, such as bisimides and diaryl diether dianhydrides, may be affected by producing an improved purity intermediate of 4-nitro-N-alkylphthalimide. A salt, such as alkali metal carbonate or alkali metal hydrogen carbonate, is added to an aqueous mixture of 4-nitro-N-alkylphthalimide and 3-nitro-N-alkylphthalimide to selectively hydrolyze the imide linkage of 3-nitro-N-alkylphthalimide forming a water-soluble acid-amide salt. An organic solvent is added to this salt mixture to phase separate 4-nitro-N-alkylphthalimide having dissolved in the organic solvent from acid-amide salt of 3-nitro-N-alkylphthalimide having dissolved in water.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 20, 2011
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Thomas L. Guggenheim, Roy Ray Odle, Karthik Venkataraman
  • Publication number: 20110263791
    Abstract: A polyetherimide having an OH content that is greater than 0 and equal or less than 100 ppm; a Relative Thermal Index that is greater than or equal to 170° C.; and a chlorine content that is greater than 0 ppm is disclosed herein. A method for preparing the polyetherimide is also disclosed.
    Type: Application
    Filed: December 28, 2010
    Publication date: October 27, 2011
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Hendrich Chiong, Thomas Link Guggenheim, Farid Fouad Khouri, Matthew L. Kuhlman, Miguel Angel Navarro de Castro, Roy Ray Odle, Brennan A. Smith
  • Patent number: 8013173
    Abstract: A method for purifying an oxydiphthalic anhydride comprises diluting a first mixture comprising an oxydiphthalic anhydride, a solvent, a catalyst, and an inorganic salt with a solvent, to provide a second mixture having a solids content of 10 to 30 percent based on total weight of the second mixture; filtering and washing the solids of the second mixture at a temperature below the crystallization point temperature of the oxydiphthalic anhydride to provide a third mixture; hydrolyzing the third mixture by adding water and a water-soluble acid to form a fourth mixture; heating the fourth mixture; then cooling to provide a solid-liquid mixture, optionally decanting a portion of the liquid, rediluting the remaining solid-liquid mixture, then filtering to provide a solid component; washing the solid component with water to provide a fifth mixture of oxydiphthalic tetraacid and water; ring closing the oxydiphthalic tetraacid to provide oxydiphthalic anhydride, and filtering the oxydiphthalic anhydride.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 6, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Beatriz Penalver Bernabe, Vijay Gopalakrishnan, Lioba Maria Kloppenburg, Matt Kuhlman, Roy Ray Odle, Eric Pressman, Narayan Ramesh, Harpreet Singh
  • Publication number: 20110212314
    Abstract: A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 1, 2011
    Applicant: SABIC INNOVATIVE PLASTICS IP BV
    Inventors: Kwok Pong Chan, Sarah Elizabeth Genovese, Erik C. Hagberg, David Bruce Hall, John Lester Maxam, Tara J. Mullen, Roy Ray Odle, Albert Santo Stella, James Mitchell White
  • Patent number: 7928154
    Abstract: A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: April 19, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Kwok Pong Chan, Sarah Elizabeth Genovese, Erik C. Hagberg, David Bruce Hall, John Lester Maxam, Tara J. Mullen, Roy Ray Odle, Albert Santo Stella, James Mitchell White
  • Patent number: 7928155
    Abstract: In one embodiment, the present invention provides a method of making a polymer-organoclay composite composition comprising (a) contacting under condensation polymerization conditions a first monomer, a second monomer, a solvent, and an organoclay composition, said organoclay composition comprising alternating inorganic silicate layers and organic layers, to provide a first polymerization reaction mixture, wherein one of said first monomer and second monomers is a diamine and the other is an dianhydride; (b) carrying out a stoichiometry verification step on the first polymerization reaction mixture; (c) optionally adding additional reactant (monomer 1, monomer 2, or chainstopper) to the first polymerization reaction mixture to provide a second polymerization reaction mixture; and (d) removing solvent from the first polymerization reaction mixture or the second polymerization reaction mixture to provide a first polymer-organoclay composite composition comprising a polymer component and an organoclay component w
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: April 19, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Feng Cao, Kwok Pong Chan, Erik C. Hagberg, Farid Fouad Khouri, Tara J. Mullen, Roy Ray Odle, James Mitchell White, Norimitsu Yamaguchi
  • Publication number: 20100160578
    Abstract: The present invention provides a process for measuring and controlling chemical reactions that produce thermoplastic polymers by utilizing a stoichiometry correction during a reaction cycle to produce thermoplastic resins with desired properties. The thermoplastic polymer is made from at least one first monomer having a first reactive end group and at least one second monomer having a second reactive end group by reaction of the first reactive end group with the second reactive end group and has a glass transition temperature of greater than 130° C.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Roy Ray Odle, Vijay Gopalakrishnan, Narayan Ramesh, Albert Santo Stella, Lioba Maria Kloppenburg, David Bruce Hall
  • Patent number: 7674920
    Abstract: A method for preparing an oxydiphthalic anhydride comprises contacting, under reactive and substantially anhydrous conditions in a reactor, at least one halophthalic anhydride containing more than 250 ppm chlorophthalide impurity with a carbonate of the formula M2CO3, wherein M is an alkali metal, in the presence of a catalytic proportion of at least one phase transfer catalyst selected from the group consisting of hexaalkylguanidinium halides and alpha,omega-bis(pentaalkylguanidinium)alkane salts, phosphonium salts, phosphazenium salts, pyridinium salts, phosphazenium salts, ammonium salts, and combinations thereof. The phase transfer catalyst is present in a sufficient amount to prepare the oxydiphthalic anhydride when the chlorophthalide is present in an amount that is more than 250 ppm, and the oxydiphthalic anhydride is produced in a yield, based on the carbonate, of at least 70%.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: March 9, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Beatriz Penalver Bernabe, Lioba Maria Kloppenburg, Matt Kuhlman, Roy Ray Odle, Eric Pressman, Narayan Ramesh, Harpreet Singh
  • Publication number: 20090292128
    Abstract: The production of low color polyetherimides, including its intermediates, such as bisimides and diaryl diether dianhydrides, may be affected by producing an improved purity intermediate of 4-nitro-N-alkylphthalimide. A salt, such as alkali metal carbonate or alkali metal hydrogen carbonate, is added to an aqueous mixture of 4-nitro-N-alkylphthalimide and 3-nitro-N-alkylphthalimide to selectively hydrolyze the imide linkage of 3-nitro-N-alkylphthalimide forming a water-soluble acid-amide salt. An organic solvent is added to this salt mixture to phase separate 4-nitro-N-alkylphthalimide having dissolved in the organic solvent from acid-amide salt of 3-nitro-N-alkylphthalimide having dissolved in water.
    Type: Application
    Filed: August 22, 2008
    Publication date: November 26, 2009
    Applicant: SABIC Innovative Plastics IP B.V.
    Inventors: THOMAS Link GUGGENHEIM, Roy Ray Odle, Karthik Venkataraman
  • Publication number: 20090247727
    Abstract: A method for purifying an oxydiphthalic anhydride comprises diluting a first mixture comprising an oxydiphthalic anhydride, a solvent, a catalyst, and an inorganic salt with a solvent, to provide a second mixture having a solids content of 10 to 30 percent based on total weight of the second mixture; filtering and washing the solids of the second mixture at a temperature below the crystallization point temperature of the oxydiphthalic anhydride to provide a third mixture; hydrolyzing the third mixture by adding water and a water-soluble acid to form a fourth mixture; heating the fourth mixture; then cooling to provide a solid-liquid mixture, optionally decanting a portion of the liquid, rediluting the remaining solid-liquid mixture, then filtering to provide a solid component; washing the solid component with water to provide a fifth mixture of oxydiphthalic tetraacid and water; ring closing the oxydiphthalic tetraacid to provide oxydiphthalic anhydride, and filtering the oxydiphthalic anhydride.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Inventors: Beatriz Penalver Bernabe, Vijay Gopalakrishnan, Lioba Maria Kloppenburg, Matt Kuhlman, Roy Ray Odle, Eric Pressman, Narayan Ramesh, Harpreet Singh
  • Publication number: 20090247725
    Abstract: a method for preparing an oxydiphthalic anhydride comprises contacting, under reactive and substantially anhydrous conditions in a reactor, at least one halophthalic anhydride containing more than 250 ppm chlorophthalide impurity with a carbonate of the formula M2CO3, wherein M is an alkali metal, in the presence of a catalytic proportion of at least one phase transfer catalyst selected from the group consisting of hexaalkylguanidinium halides and alpha,omega-bis(pentaalkylguanidinium)alkane salts, phosphonium salts, phosphazenium salts, pyridinium salts, phosphazenium salts, ammonium salts, and combinations thereof. The phase transfer catalyst is present in a sufficient amount to prepare the oxydiphthalic anhydride when the chlorophthalide is present in an amount that is more than 250 ppm, and the oxydiphthalic anhydride is produced in a yield, based on the carbonate, of at least 70%.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Inventors: Beatriz Penalver Bernabe, Lioba Maria Kloppenburg, Matt Kuhlman, Roy Ray Odle, Eric Pressman, Narayan Ramesh, Harpreet Singh
  • Publication number: 20090099300
    Abstract: Methods of making miscible and compatible immiscible polymer blends are disclosed. The polymer blends have a polyimide as a component. The miscible polymer blends have a single glass transition temperature. The compatible polymer blends have two glass transition temperatures. The polymer blends may optionally include one or more fillers.
    Type: Application
    Filed: April 9, 2008
    Publication date: April 16, 2009
    Inventors: Robert Russell Gallucci, Tara J. Mullen, Roy Ray Odle, Kapil Chandrakant Sheth, James Mitchell White
  • Publication number: 20090029615
    Abstract: A composition is described, which comprises a crystallizable polyetherimide derived from the polymerization of: (a) a dianhydride component, comprising more than 96.8 mole % of 4,4?-bisphenol A dianhydride or a chemical equivalent thereof; and (b) a diamine component comprising a diamine or a chemical equivalent thereof, wherein the crystallizable polyetherimide has a Tm ranging from 250° C. to 400° C. and the difference between the Tm and Tg of the composition is more than 50° C. Further described are articles, such as fibers, made from the composition, methods for making the composition, methods for making the articles, and methods for using the articles.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 29, 2009
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Prameela Susarla, Amitabh Bansal, Xiaolan Wei, Ganesh Kailasam, Thomas Link Guggenheim, Karthik Venkataraman, Erik C. Hagberg, Roy Ray Odle