Patents by Inventor Roy S. Nutter

Roy S. Nutter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10156134
    Abstract: A method for detecting a subsurface anomaly at a near-surface depth, comprises positioning an electromagnetic sensor configured to measure a component of a planetary electromagnetic field such that the electromagnetic sensor is suspended just above a ground-air barrier and does not contact a ground surface; selecting an electromagnetic frequency by calculating a function of properties of the ground that include relative permittivity, relative permeability, and resistivity; moving the electromagnetic sensor over the surface of the ground; repeatedly measuring intensity of the component of the planetary electromagnetic field at the frequency to obtain a set of measurements; and comparing at least a first measurement in the set of measurements to at least a second measurement in the set of measurements to identify a change in the intensity of the component of the planetary electromagnetic field that is indicative of a presence of a subsurface anomaly.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: December 18, 2018
    Assignee: Terra Response LLC
    Inventors: James E. Smith, Franz A. Pertl, Roy S. Nutter, Andrew D. Lowery
  • Publication number: 20170356285
    Abstract: A method for detecting a subsurface anomaly at a near-surface depth, comprises positioning an electromagnetic sensor configured to measure a component of a planetary electromagnetic field such that the electromagnetic sensor is suspended just above a ground-air barrier and does not contact a ground surface; selecting an electromagnetic frequency by calculating a function of properties of the ground that include relative permittivity, relative permeability, and resistivity; moving the electromagnetic sensor over the surface of the ground; repeatedly measuring intensity of the component of the planetary electromagnetic field at the frequency to obtain a set of measurements; and comparing at least a first measurement in the set of measurements to at least a second measurement in the set of measurements to identify a change in the intensity of the component of the planetary electromagnetic field that is indicative of a presence of a subsurface anomaly.
    Type: Application
    Filed: August 1, 2017
    Publication date: December 14, 2017
    Inventors: James E. Smith, Franz A. Pertl, Roy S. Nutter, Andrew D. Lowery
  • Patent number: 9719343
    Abstract: Methods and apparatus are provided for passively detecting the presence of near-surface human-scale underground anomalies using earth field measurements. A sensor is used to measure at least one electric or magnetic component of the Earth's electromagnetic field at a frequency of 5 kHz or greater in proximity to the Earth's surface for a given area. The measured intensities are used to identify variations indicative of the presence of a near-surface human-scale underground anomaly. Measuring the intensity of at least one component of the electromagnetic field at a plurality of frequencies of 5 kHz or greater can be used to determine the depth and characteristic of a near-surface human-scale underground anomaly.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 1, 2017
    Assignee: Terra Response, LLC
    Inventors: James E. Smith, Franz A. Pertl, Roy S. Nutter, Jr., Andrew D. Lowery
  • Patent number: 7806368
    Abstract: A roll-on/roll-off, aircraft-borne sensor pod deployment system having an operator station and a sensor pallet system and method of using same. The operator station has a base platform, a shelter box mounted on the base platform for accommodating a human operator, and a computer installed inside the shelter box. The sensor pallet system has a base platform, a linear system mounted on the base platform, a rotational system mounted on the linear system, a mechanical arm attached to the rotational system, a sensor pod attached to the mechanical arm, and an electrical control system that provides power to the deployment system and controls movements of the sensor pallet system. In operation, the sensor pod can be retracted into a compact, stowing position, or extended out an opening in the aircraft for an unobstructed field of view. The deployment system optionally includes an apparatus and method for sealing the aircraft opening.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: October 5, 2010
    Assignee: West Virginia University
    Inventors: James E. Smith, Roy S. Nutter, Jr., Gregory J. Thompson, Zenovy S. Wowczuk, Gerald M. Angle, II
  • Patent number: 7726605
    Abstract: A roll-on/roll-off, aircraft-borne sensor pod deployment system having an operator station and a sensor pallet system and method of using same. The operator station has a base platform, a shelter box mounted on the base platform for accommodating a human operator, and a computer installed inside the shelter box. The sensor pallet system has a base platform, a linear system mounted on the base platform, a rotational system mounted on the linear system, a mechanical arm attached to the rotational system, a sensor pod attached to the mechanical arm, and an electrical control system that provides power to the deployment system and controls movements of the sensor pallet system. In operation, the sensor pod can be retracted into a compact, stowing position, or extended out an opening in the aircraft for an unobstructed field of view. The deployment system optionally includes an apparatus and method for sealing the aircraft opening.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: June 1, 2010
    Assignee: West Virginia University
    Inventors: James E. Smith, Roy S. Nutter, Jr., Gregory J. Thompson, Zenovy S. Wowczuk, Gerald M. Angle, II
  • Patent number: 7726604
    Abstract: A roll-on/roll-off, aircraft-borne sensor pod deployment system having an operator station and a sensor pallet system and method of using same. The operator station has a base platform, a shelter box mounted on the base platform for accommodating a human operator, and a computer installed inside the shelter box. The sensor pallet system has a base platform, a linear system mounted on the base platform, a rotational system mounted on the linear system, a mechanical arm attached to the rotational system, a sensor pod attached to the mechanical arm, and an electrical control system that provides power to the deployment system and controls movements of the sensor pallet system. In operation, the sensor pod can be retracted into a compact, stowing position, or extended out an opening in the aircraft for an unobstructed field of view. The deployment system optionally includes an apparatus and method for sealing the aircraft opening.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: June 1, 2010
    Assignee: West Virginia University
    Inventors: James E. Smith, Roy S. Nutter, Jr., Gregory J. Thompson, Zenovy S. Wowczuk, Gerald M. Angle, II
  • Patent number: 7387276
    Abstract: A roll-on/roll-off, aircraft-borne sensor pod deployment system having an operator station and a sensor pallet system and method of using same. The operator station has a base platform, a shelter box mounted on the base platform for accommodating a human operator, and a computer installed inside the shelter box. The sensor pallet system has a base platform, a linear system mounted on the base platform, a rotational system mounted on the linear system, a mechanical arm attached to the rotational system, a sensor pod attached to the mechanical arm, and an electrical control system that provides power to the deployment system and controls movements of the sensor pallet system. In operation, the sensor pod can be retracted into a compact, stowing position, or extended out an opening in the aircraft for an unobstructed field of view. The deployment system optionally includes an apparatus and method for sealing the aircraft opening.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: June 17, 2008
    Assignee: West Virginia University
    Inventors: James E. Smith, Roy S. Nutter, Jr., Gregory J. Thompson, Zenovy S. Wowczuk, Gerald M. Angle, II
  • Patent number: 6887069
    Abstract: The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: May 3, 2005
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Jimmy D. Thornton, George A. Richards, Keith A. Dodrill, Roy S. Nutter, Jr., Douglas Straub
  • Patent number: 6669483
    Abstract: An interactive breast model (100) is disclosed for training lay persons and health care providers to perform effective breast examinations and to locate and identify masses in a breast. The model of the invention comprises a silicone breast model (102) equipped with a data acquisition unit (106) having a plurality of sensors (1002) for detecting displacement in the surface (202) of the breast model during an examination and data acquisition modules (1004) for receiving the sensor output data. The data acquisition unit (106) sends the sensor output to a personal computer (108) for analysis and display to the user (1018). Software (1006) executing on the personal computer performs fuzzy logic algorithms to correlate the sensor output data to usable information regarding the time duration of the examination, finger placement of the user, and the level of displacement throughout the examination. This performance data (1030) is displayed to the user.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: December 30, 2003
    Assignee: West Virginia University
    Inventors: Victor W. Leight, Susan B. Leight, Roy S. Nutter, Jr., Christy B. Schmidt, Douglas J. Miller
  • Patent number: 6575757
    Abstract: An interactive instrumented model for training lay persons and health care providers to perform effective physical examinations of anatomy. A solid-state sensing system, e.g., a tactile sensor pad, is combined with a model of human anatomy, e.g., a breast model, or a part of a patient to train individuals in the giving of proper physical examinations. The solid-state sensing system is external to the model or part and is in contact with an external surface of the model or part. The solid-state sensing system provides a computer system with multiple levels of pressure applied to the model or part, as well as with the position of each applied pressure to the model or part. The computer system displays the results of a physical examination of the model to the user.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: June 10, 2003
    Assignee: West Virginia University
    Inventors: Susan B. Leight, Roy S. Nutter, Jr., Bratislav Matic
  • Patent number: 6437751
    Abstract: An electromagnetic antenna includes a multiply connected surface, such as a toroidal surface; first and second insulated conductors; and first and second signal terminals. The first insulated conductor extends around and over the surface with a first pitch or winding sense from a first node to a second node. The second insulated conductor also extends around and over the surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node. The first and second insulated conductors are contrawound relative to each other around and over the surface. In one embodiment of the invention, at least one of the nodes is open. In other embodiments of the invention, the signal terminals are structured for connection to a cooperative antenna structure.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: August 20, 2002
    Assignee: West Virginia University
    Inventors: Robert P. M. Craven, James E. Smith, Larry Hawks, Roy S. Nutter, Jr., Franz A. Pertl
  • Publication number: 20020076681
    Abstract: An interactive instrumented model for training lay persons and health care providers to perform effective physical examinations of anatomy. A solid-state sensing system, e.g., a tactile sensor pad, is combined with a model of human anatomy, e.g., a breast model, or a part of a patient to train individuals in the giving of proper physical examinations. The solid-state sensing system is external to the model or part and is in contact with an external surface of the model or part. The solid-state sensing system provides a computer system with multiple levels of pressure applied to the model or part, as well as with the position of each applied pressure to the model or part. The computer system displays the results of a physical examination of the model to the user.
    Type: Application
    Filed: August 3, 2001
    Publication date: June 20, 2002
    Inventors: Susan B. Leight, Roy S. Nutter, Bratislav Matic