Patents by Inventor Ru-Chin Tu

Ru-Chin Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060043394
    Abstract: A gallium-nitride(GaN) based light emitting diode (LED) structure utilizing materials having compatible lattice constant is provided. When aluminum-indium-nitride (AlxIn1-xN, 0<x<1) is used to make the p-type cladding layer within the GaN-based LED structure, the cladding layer has a lattice constant compatible with that of GaN. The active layer's multi-quantum well (MQW) structure, therefore, would not be damaged from the excessive stress resulted from the incompatible lattice constant during the GaN-based LED's epitaxial growth. In addition, AlxIn1-xN (0<x<1) has a wider band gap than that of GaN, which can prevent electrons from overflowing from the MQW active layer. This, in turn, will increase the possibility of forming electron-hole pairs within the MQW active layer. Also due to its wider band gap, AlxIn1-xN (0<x<1) has an effective confinement effect on the photons, which again will increase the GaN-based LED's lighting efficiency.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060038195
    Abstract: The specification discloses a light-emitting diode and the corresponding manufacturing method. A GaN thick film with a slant surface is formed on the surface of a substrate. An epitaxial slant surface is naturally formed using the properties of the GaN epitaxy. An LED structure is grown on the GaN thick film to form an LED device. This disclosed method and device can simplify the manufacturing process. The invention further uses the GaN thick film epitaxial property to make various kinds of LED chips with multiple slant surfaces and different structures. Since the surface area for emitting light on the chip increases and the multiple slant surfaces reduce the chances of total internal reflections, the light emission efficiency of the invention is much better than the prior art.
    Type: Application
    Filed: October 21, 2005
    Publication date: February 23, 2006
    Inventors: Shyi-Ming Pan, Jenq-Dar Tsay, Ru-Chin Tu, Jung-Tsung Hsu
  • Publication number: 20060038193
    Abstract: Disclosed is a multi-quantum-well light emitting diode, which makes enormous adjustments and improvements over the conventional light emitting diode, and further utilizes a transparent contact layer of better transmittance efficiency, so as to significantly raise the illuminance of this light emitting diode and its light emission efficiency. The multi-quantum-well light emitting diode has a structure including: substrate, buffer layer, n-type gallium-nitride layer, active light-emitting-layer, p-type cladding layer, p-type contact layer, barrier buffer layer, transparent contact layer, and the n-type electrode layer.
    Type: Application
    Filed: September 16, 2004
    Publication date: February 23, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060027821
    Abstract: Disclosed is a GaN LED structure with a p-type contacting layer using Al—Mg-codoped In1-yGayN grown at low temperature, and having low resistivity. The LED structure comprises, from the bottom to top, a substrate, a buffer layer, an n-type GaN layer, an active layer, a p-type shielding layer, and a p-type contacting layer. In this invention, Mg and Al are used to co-dope the In1-yGayN to grow a low resistive p-type contacting layer at low temperature. Because of the Al—Mg-codoped, the light absorption problem of the p-type In1-yGayN layer is improved. The product, not only has the advantage of convenience of the p-type contacting layer for being manufactured at low temperature, but also shows good electrical characteristics and lowers the operating voltage of the entire element so that the energy consumption during operation is reduced and the yield rate is increased.
    Type: Application
    Filed: February 3, 2005
    Publication date: February 9, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 6979835
    Abstract: An epitaxial structure for the GaN-based LED is provided. The GaN-based LED uses a substrate usually made of sapphire or silicon-carbide (SiC). On top of the substrate, the GaN-based LED contains an n-type contact layer made of an n-type GaN-based material. On top of the n-type contact layer, the GaN-based LED further contains a lower barrier layer covering part of the surface of the n-type contact layer. A negative electrode is also on top of and has an ohmic contact with the n-type contact layer in an area not covered by the lower barrier layer. On top of the lower barrier layer, the GaN-based LED then further contains an active layer made of aluminum-gallium-indium-nitride, an upper barrier layer, a p-type contact layer made of a magnesium (Mg)-doped GaN material, and a positive electrode having an ohmic contact with the p-type contact layer, sequentially stacked in this order from bottom to top.
    Type: Grant
    Filed: September 11, 2004
    Date of Patent: December 27, 2005
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Cheng-Tsang Yu, Ru-Chin Tu, Liang-Wen Wu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 6969627
    Abstract: The specification discloses a light-emitting diode and the corresponding manufacturing method. A GaN thick film with a slant surface is formed on the surface of a substrate. An epitaxial slant surface is naturally formed using the properties of the GaN epitaxy. An LED structure is grown on the GaN thick film to form an LED device. This disclosed method and device can simplify the manufacturing process. The invention further uses the GaN thick film epitaxial property to make various kinds of LED chips with multiple slant surfaces and different structures. Since the surface area for emitting light on the chip increases and the multiple slant surfaces reduce the chances of total internal reflections, the light emission efficiency of the invention is much better than the prior art.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: November 29, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Shyi-Ming Pan, Jenq-Dar Tsay, Ru-Chin Tu, Jung-Tsung Hsu
  • Publication number: 20040115845
    Abstract: The specification discloses a light-emitting diode and the corresponding manufacturing method. A GaN thick film with a slant surface is formed on the surface of a substrate. An epitaxial slant surface is naturally formed using the properties of the GaN epitaxy. An LED structure is grown on the GaN thick film to form an LED device. This disclosed method and device can simplify the manufacturing process. The invention further uses the GaN thick film epitaxial property to make various kinds of LED chips with multiple slant surfaces and different structures. Since the surface area for emitting light on the chip increases and the multiple slant surfaces reduce the chances of total internal reflections, the light emission efficiency of the invention is much better than the prior art.
    Type: Application
    Filed: May 13, 2003
    Publication date: June 17, 2004
    Inventors: Shyi-Ming Pan, Jenq-Dar Tsay, Ru-Chin Tu, Jung-Tsung Hsu