Patents by Inventor Ru Feng Du

Ru Feng Du has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160065148
    Abstract: A class-D audio amplifier incorporates an overcurrent protection scheme implementing two overcurrent thresholds to avoid a dynamic impedance drop. When output current reaches the first threshold as a result of an impedance drop across the speaker, the overcurrent protection circuitry limits the output current to the value of the first threshold, but does not shut down the circuit. The second threshold is used to detect an overcurrent condition to shut down the circuit. Current limiting logic of a first channel monitors the overcurrent condition of a second channel and controls the first channel output in response thereto. This permits the second channel output current to reach the second threshold if the circuit is experiencing a short-circuit condition. This scheme also allows the output current to drop below the first threshold if the overcurrent condition of the second channel is caused by an impedance drop across the output speaker.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 3, 2016
    Applicant: STMicroelectronics (Shenzhen) R&D Co. Ltd
    Inventors: Qi Yu Liu, Ru Feng Du
  • Patent number: 9276530
    Abstract: A class-D audio amplifier incorporates an overcurrent protection scheme implementing two overcurrent thresholds to avoid a dynamic impedance drop. When output current reaches the first threshold as a result of an impedance drop across the speaker, the overcurrent protection circuitry limits the output current to the value of the first threshold, but does not shut down the circuit. The second threshold is used to detect an overcurrent condition to shut down the circuit. Current limiting logic of a first channel monitors the overcurrent condition of a second channel and controls the first channel output in response thereto. This permits the second channel output current to reach the second threshold if the circuit is experiencing a short-circuit condition. This scheme also allows the output current to drop below the first threshold if the overcurrent condition of the second channel is caused by an impedance drop across the output speaker.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: March 1, 2016
    Assignee: STMicroelectronics (Shenzhen) R&D Co. Ltd
    Inventors: Qi Yu Liu, Ru Feng Du
  • Patent number: 9231535
    Abstract: A Class-D amplifier includes a pre-amplifier having an input configured to receive an amplifier reference voltage signal which is ramped at start-up at a fast rate. An integrator has a first input configured to receive an input signal from the pre-amplifier and a second input configured to receive an integrator reference voltage signal which is ramped at start-up at a slower rate. A modulator has an input coupled to an output of the integrator. The modulator generates a pulse width modulated output signal. Operation of the Class-D amplifier is controlled at start-up by applying a slow ramped signal as the integrator reference voltage signal and a fast ramped signal as the amplifier reference voltage so that the pulse width modulated output signal exhibits an increasing change in duty cycle in response to an increasing voltage of the integrator reference voltage signal, and no “pop” is introduced at start-up.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 5, 2016
    Assignee: STMicroelectronics (Shenzhen) R&D Co. Ltd
    Inventors: Ru Feng Du, Qi Yu Liu
  • Publication number: 20150071464
    Abstract: A class D amplifier receives and amplifies a differential analog signal which is then differentially integrated. Two pulse width modulators generate pulse signals corresponding to the differentially integrated analog signal and two power units generate output pulse signals. The outputs the power units are coupled to input terminals of integrators via a resistor feedback network. An analog output unit converts the pulse signals to an output analog signal. The differential integration circuitry implements a soft transition between mute/un-mute. In mute, the integrator output is fixed. During the soft transition, the PWM outputs change slowly from a fixed 50% duty cycle to a final value to ensure that no pop noise is present in the output as a result of mode change.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 12, 2015
    Applicant: STMicroelectronics (Shenzhen) R&D Co. Ltd.
    Inventors: Ru Feng Du, Qi Yu Liu
  • Publication number: 20140285258
    Abstract: A Class-D amplifier includes a pre-amplifier having an input configured to receive an amplifier reference voltage signal which is ramped at start-up at a fast rate. An integrator has a first input configured to receive an input signal from the pre-amplifier and a second input configured to receive an integrator reference voltage signal which is ramped at start-up at a slower rate. A modulator has an input coupled to an output of the integrator. The modulator generates a pulse width modulated output signal. Operation of the Class-D amplifier is controlled at start-up by applying a slow ramped signal as the integrator reference voltage signal and a fast ramped signal as the amplifier reference voltage so that the pulse width modulated output signal exhibits an increasing change in duty cycle in response to an increasing voltage of the integrator reference voltage signal, and no “pop” is introduced at start-up.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 25, 2014
    Applicant: STMicroelectronics (Shenzhen) R&D Co. Ltd.
    Inventors: Ru Feng Du, Qi Yu Liu