Patents by Inventor Ru-Gun Liu

Ru-Gun Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200057375
    Abstract: An extreme ultraviolet lithography (EUVL) method includes providing at least two phase-shifting mask areas having a same pattern. A resist layer is formed over a substrate. An optimum exposure dose of the resist layer is determined, and a latent image is formed on a same area of the resist layer by a multiple exposure process. The multiple exposure process includes a plurality of exposure processes and each of the plurality of exposure processes uses a different phase-shifting mask area from the at least two phase-shifting mask areas having a same pattern.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 20, 2020
    Inventors: Shinn-Sheng YU, Ru-Gun LIU, Hsu-Ting HUANG, Chin-Hsiang LIN
  • Patent number: 10565348
    Abstract: A method of fabricating an integrated circuit is disclosed. The method includes defining a via grid, generating a first layout design of the integrated circuit based on at least the via grid or design criteria, generating a standard cell layout design of the integrated circuit, generating a via color layout design of the integrated circuit based on the first layout design and the standard cell layout design, performing a color check on the via color layout design based on design rules, and fabricating the integrated circuit based on at least the via color layout design. The first layout design has a first set of vias arranged in first rows and first columns based on the via grid. The standard cell layout design has standard cells and a second set of vias arranged in the standard cells. The via color layout design has a third set of vias.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: February 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Cheng Lin, Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shih-Wei Peng, Wei-Chen Chien
  • Publication number: 20200050725
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Chia-Ping CHIANG, Ming-Hui CHIH, Chih-Wei HSU, Ping-Chieh WU, Ya-Ting CHANG, Tsung-Yu WANG, Wen-Li CHENG, Hui En YIN, Wen-Chun HUANG, Ru-Gun LIU, Tsai-Sheng GAU
  • Publication number: 20200041915
    Abstract: A method of manufacturing a semiconductor device includes dividing a number of dies along an x axis in a die matrix in each exposure field in an exposure field matrix delineated on the semiconductor substrate, wherein the x axis is parallel to one edge of a smallest rectangle enclosing the exposure field matrix. A number of dies is divided along a y axis in the die matrix, wherein the y axis is perpendicular to the x axis. Sequences SNx0, SNx1, SNx, SNxr, SNy0, SNy1, SNy, and SNyr are formed. p*(Nbx+1)?2 stepping operations are performed in a third direction and first sequence exposure/stepping/exposure operations and second sequence exposure/stepping/exposure operations are performed alternately between any two adjacent stepping operations as well as before a first stepping operation and after a last stepping operation. A distance of each stepping operation in order follows the sequence SNx.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 6, 2020
    Inventors: Shinn-Sheng YU, Ru-Gun LIU, Hsu-Ting HUANG, Kenji YAMAZOE, Minfeng CHEN, Shuo-Yen CHOU, Chin-Hsiang LIN
  • Publication number: 20200043741
    Abstract: A method of manufacturing a semiconductor device includes depositing a first material on a substrate, depositing on the substrate a second material that has an etch selectivity different from an etch selectively of the first material, depositing a spacer material on the first and second material, and etching the substrate using the spacer material as an etch mask to form a fin under the first material and a fin under the second material.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chin-Yuan Tseng, Hsin-Chih Chen, Shi Ning Ju, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Wei-Cheng Lin, Wei-Liang Lin
  • Publication number: 20200020588
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method may be performed by forming a plurality of gate structures over a substrate, and forming a plurality of source and drain regions along opposing sides of the plurality of gate structures. A plurality of middle-of-the-line (MOL) structures are formed at locations laterally interleaved between the plurality of gate structures. The plurality of MOL structures are redefined by getting rid of a part but not all of one or more of the plurality of MOL structures. Redefining the plurality of MOL structures results in a plurality of MOL active structures arranged over the plurality of source and drain regions at an irregular pitch.
    Type: Application
    Filed: September 22, 2019
    Publication date: January 16, 2020
    Inventors: Hui-Ting Yang, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Meng-Hung Shen, Ru-Gun Liu, Wei-Cheng Lin
  • Publication number: 20200020625
    Abstract: Examples of an integrated circuit a having an advanced two-dimensional (2D) metal connection with metal cut and methods of fabricating the same are provided. An example method for fabricating a conductive interconnection layer of an integrated circuit may include: patterning a conductive connector portion on the conductive interconnection layer of the integrated circuit using extreme ultraviolet (EUV) lithography, wherein the conductive connector portion is patterned to extend across multiple semiconductor structures in a different layer of the integrated circuit; and cutting the conductive connector portion into a plurality of conductive connector sections, wherein the conductive connector portion is cut by removing conductive material from the metal connector portion at one or more locations between the semiconductor structures.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Chih-Liang Chen, Cheng-Chi Chuang, Chih-Ming Lai, Chia-Tien Wu, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shun Li Chen, Shih-Wei Peng, Tien-Lu Lin
  • Patent number: 10535520
    Abstract: The present disclosure provides a method in accordance with some embodiments. The method includes forming a material layer that includes an array of fin features, wherein at least one fin feature has a first material on a first sidewall and a second material on a second sidewall that is opposite to the first sidewall, wherein the first material is different from the second material. The method further includes exposing the second sidewall of the at least one fin feature and removing the at least one fin feature.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Yuan Tseng, Wei-Liang Lin, Li-Te Lin, Ru-Gun Liu, Min Cao
  • Patent number: 10535646
    Abstract: Methods disclosed herein form semiconductor devices having minimum spacings that correlate with spacer widths. An exemplary method includes forming a target layer over a substrate, forming a patterning layer over the target layer, and etching the target layer using the patterning layer as an etch mask. The patterning layer includes a first pattern feature, a second pattern feature spaced a first distance (corresponding with a first width of a first spacer fabricated during a first spacer patterning process) from the first pattern feature, and a third pattern feature spaced a second distance (corresponding with a second width of a second spacer fabricated during a second spacer patterning process) from the first pattern feature and a third distance (corresponding with a third width of a third spacer formed during the second spacer patterning process) from the second pattern feature.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Ming Chang, Ming-Feng Shieh, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20200013630
    Abstract: Methods are disclosed herein for patterning integrated circuit devices, such as fin-like field effect transistor devices. An exemplary method includes forming a material layer that includes an array of fin features, and performing a fin cut process to remove a subset of the fin features. The fin cut process includes exposing the subset of fin features using a cut pattern and removing the exposed subset of the fin features. The cut pattern partially exposes at least one fin feature of the subset of fin features. In implementations where the fin cut process is a fin cut first process, the material layer is a mandrel layer and the fin features are mandrels. In implementations where the fin cut process is a fin cut last process, the material layer is a substrate (or material layer thereof), and the fin features are fins defined in the substrate (or material layer thereof).
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Chin-Yuan Tseng, Wei-Liang Lin, Hsin-Chih Chen, Shi Ning Ju, Ken-Hsien Hsieh, Yung-Sung Yen, Ru-Gun Liu
  • Publication number: 20200004137
    Abstract: A photo mask for manufacturing a semiconductor device includes a first pattern extending in a first direction, a second pattern extending in the first direction and aligned with the first pattern, and a sub-resolution pattern extending in the first direction, disposed between an end of the first pattern and an end of the second pattern. A width of the first pattern and a width of the second pattern are equal to each other, and the first pattern and the second pattern are for separate circuit elements in the semiconductor device.
    Type: Application
    Filed: February 27, 2019
    Publication date: January 2, 2020
    Inventors: Ru-Gun LIU, Chin-Hsiang LIN, Cheng-I HUANG, Chih-Ming LAI, Lai Chien WEN, Ken-Hsien HSIEH, Shih-Ming CHANG, Yuan-Te HOU
  • Publication number: 20200006085
    Abstract: In a method of manufacturing a semiconductor device, an underlying structure is formed over a substrate. A film is formed over the underlying structure. Surface topography of the film is measured and the surface topography is stored as topography data. A local etching is performed by using directional etching and scanning the substrate so that an entire surface of the film is subjected to the directional etching. A plasma beam intensity of the directional etching is adjusted according to the topography data.
    Type: Application
    Filed: April 12, 2019
    Publication date: January 2, 2020
    Inventors: Ya-Wen YEH, Yu-Tien SHEN, Shih-Chun HUANG, Po-Chin CHANG, Wei-Liang LIN, Yung-Sung YEN, Wei-Hao WU, Li-Te LIN, Pinyen LIN, Ru-Gun LIU
  • Publication number: 20200006078
    Abstract: In a method of forming a groove pattern extending in a first axis in an underlying layer over a semiconductor substrate, a first opening is formed in the underlying layer, and the first opening is extended in the first axis by directional etching to form the groove pattern.
    Type: Application
    Filed: January 4, 2019
    Publication date: January 2, 2020
    Inventors: Ru-Gun LIU, Chih-Ming LAI, Wei-Liang LIN, Yung-Sung YEN, Ken-Hsien HSIEH, Chin-Hsiang LIN
  • Publication number: 20200006121
    Abstract: In accordance with an aspect of the present disclosure, in a pattern forming method for a semiconductor device, a first opening is formed in an underlying layer disposed over a substrate. The first opening is expanded in a first axis by directional etching to form a first groove in the underlying layer. A resist pattern is formed over the underlying layer. The resist pattern includes a second opening only partially overlapping the first groove. The underlying layer is patterned by using the resist pattern as an etching mask to form a second groove.
    Type: Application
    Filed: April 3, 2019
    Publication date: January 2, 2020
    Inventors: Ru-Gun LIU, Chin-Hsiang LIN, Chih-Ming LAI, Wei-Liang LIN, Yung-Sung YEN
  • Publication number: 20200004135
    Abstract: A method of making a mask includes computing a transmission cross coefficient (TCC) matrix for an optical system for performing a lithography process, wherein computing includes decomposing the transmission cross coefficient matrix into an ideal transmission cross coefficient (TCC) kernel set for a corresponding ideal optical system and at least one perturbation kernel set with coefficients corresponding to optical defects in the optical system, calibrating a lithography model by iteratively adjusting the lithography model based on a comparison between simulated wafer patterns and measured printed wafer patterns, and providing the calibrated lithography model, which includes an ideal TCC kernel set and the at least two perturbation kernels sets and a resist model, to a mask layout synthesis tool to obtain a synthesized mask layout corresponding to a target mask layout for manufacturing the mask using the synthesized mask layout.
    Type: Application
    Filed: June 26, 2019
    Publication date: January 2, 2020
    Inventors: Hsu-Ting HUANG, Ru-Gun LIU, Shinn-Sheng YU
  • Patent number: 10520303
    Abstract: A method includes receiving, into a measurement tool, a substrate having a material feature, wherein the material feature is formed on the substrate according to a design feature. The method further includes applying a source signal on the material feature, collecting a response signal from the material feature by using a detector in the measurement tool to obtain measurement data, and with a computer connected to the measurement tool, calculating a simulated response signal from the design feature. The method further includes, with the computer, in response to determining that a difference between the collected response signal and the simulated response signal exceeds a predetermined value, causing the measurement tool to re-measure the material feature.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chui-Jung Chiu, Jen-Chieh Lo, Ying-Chou Cheng, Ru-Gun Liu
  • Patent number: 10515823
    Abstract: An integrated circuit structure includes a first metal feature formed into a first dielectric layer, a second metal feature formed into a second dielectric layer, the second dielectric layer being disposed on said first dielectric layer, and a via connecting the first metal feature to the second metal feature, wherein a top portion of the via is offset from a bottom portion of the via.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Ming Chang, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau, Chung-Ju Lee, Tien-I Bao, Shau-Lin Shue
  • Patent number: 10514613
    Abstract: A pattern modification method and a patterning process are provided. The method includes extracting a first pattern and a second pattern to be respectively transferred to a first target portion and a second target portion of a resist layer. The method also includes obtaining regional information of the first target portion and the second target portion. The method includes determining a first desired focus position for transferring the first pattern based on the regional information. In addition, the method includes determining a second desired focus position for transferring the second pattern based on the regional information. The method includes modifying one or both of the first pattern and the second pattern. As a result, focus positions of the first pattern and the second pattern are shifted to be substantially and respectively positioned at the first desired focus position and the second desired focus position during an exposure operation.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Ru-Gun Liu, Shuo-Yen Chou, Chien-Wen Lai, Zengqin Zhao
  • Patent number: 10510688
    Abstract: The present disclosure relates to an integrated circuit having a via rail that prevents reliability concerns such as electro-migration. In some embodiments, the integrated circuit has a first plurality of conductive contacts arranged over a semiconductor substrate. A first metal interconnect wire is arranged over the first plurality of conductive contacts, and a second metal interconnect wire is arranged over the first metal interconnect wire. A via rail is arranged over the first metal interconnect wire and electrically couples the first metal interconnect wire and the second metal interconnect wire. The via rail has a length that continuously extends over two or more of the plurality of conductive contacts. The length of via rail provides for an increased cross-sectional area both between the first metal interconnect wire and the second metal interconnect wire and along a length of the via rail, thereby mitigating electro-migration within the integrated circuit.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kam-Tou Sio, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Ru-Gun Liu, Wen-Hao Chen
  • Patent number: 10509881
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau