Patents by Inventor Ru-Gun Liu

Ru-Gun Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10866506
    Abstract: A method for manufacturing a photo mask for a semiconductor device includes receiving a plurality of hotspot regions of a mask layout corresponding to the semiconductor device. The method further includes classifying the plurality of hotspot regions into two or more hotspot groups such that same or similar hotspot regions are classified into same hotspot groups. The hotspot groups includes a first hotspot group that has at least two hotspot regions. The method also includes correcting a first hotspot region of the first hotspot group to generate an enhancement of the first hotspot region and correcting other hotspot regions of the first hotspot group using the enhancement of the first hotspot region to generate enhancements of other hotspot regions of the first hotspot group.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fu An Tien, Hsu-Ting Huang, Ru-Gun Liu
  • Patent number: 10866505
    Abstract: Provided is a method for fabricating a semiconductor device including performing an OPC process to an IC layout pattern to generate a post-OPC layout pattern. In some embodiments, the method further includes applying an MPC model to the post-OPC layout pattern to generate a simulated mask pattern. By way of example, the simulated mask pattern is compared to a mask pattern calculated from a target wafer pattern. Thereafter, and based on the comparing, an outcome of an MPC process is determined.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsu-Ting Huang, Ru-Gun Liu
  • Patent number: 10867833
    Abstract: A semiconductor device includes a buried metal line disposed in a semiconductor substrate, a first dielectric material on a first sidewall of the buried metal line and a second dielectric material on a second sidewall of the buried metal line, a first multiple fins disposed proximate the first sidewall of the buried metal line, a second multiple fins disposed proximate the second sidewall of the buried metal line, a first metal gate structure over the first multiple fins and over the buried metal line, wherein the first metal gate structure extends through the first dielectric material to contact the buried metal line, and a second metal gate structure over the second multiple fins and over the buried metal line.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Jiann-Tyng Tzeng, Chih-Ming Lai, Ru-Gun Liu, Charles Chew-Yuen Young
  • Patent number: 10867840
    Abstract: A method includes depositing a second dielectric layer over a first dielectric layer, depositing a third dielectric layer over the second dielectric layer, patterning a plurality of first openings in the third dielectric layer, etching the second dielectric layer through the first openings to form second openings in the second dielectric layer, performing a plasma etching process directed at the second dielectric layer from a first direction, the plasma etching process extending the second openings in the first direction, and etching the first dielectric layer through the second openings to form third openings in the first dielectric layer.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Nien Su, Shu-Huei Suen, Jyu-Horng Shieh, Ru-Gun Liu
  • Patent number: 10866525
    Abstract: A method of manufacturing a semiconductor device includes dividing a number of dies along an x axis in a die matrix in each exposure field in an exposure field matrix delineated on the semiconductor substrate, wherein the x axis is parallel to one edge of a smallest rectangle enclosing the exposure field matrix. A number of dies is divided along a y axis in the die matrix, wherein the y axis is perpendicular to the x axis. Sequences SNx0, SNx1, SNx, SNxr, SNy0, SNy1, SNy, and SNyr are formed. p*(Nbx+1)?2 stepping operations are performed in a third direction and first sequence exposure/stepping/exposure operations and second sequence exposure/stepping/exposure operations are performed alternately between any two adjacent stepping operations as well as before a first stepping operation and after a last stepping operation. A distance of each stepping operation in order follows the sequence SNx.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shinn-Sheng Yu, Ru-Gun Liu, Hsu-Ting Huang, Kenji Yamazoe, Minfeng Chen, Shuo-Yen Chou, Chin-Hsiang Lin
  • Patent number: 10867112
    Abstract: A method of making a mask includes computing a transmission cross coefficient (TCC) matrix for an optical system for performing a lithography process, wherein computing includes decomposing the transmission cross coefficient matrix into an ideal transmission cross coefficient (TCC) kernel set for a corresponding ideal optical system and at least one perturbation kernel set with coefficients corresponding to optical defects in the optical system, calibrating a lithography model by iteratively adjusting the lithography model based on a comparison between simulated wafer patterns and measured printed wafer patterns, and providing the calibrated lithography model, which includes an ideal TCC kernel set and the at least two perturbation kernels sets and a resist model, to a mask layout synthesis tool to obtain a synthesized mask layout corresponding to a target mask layout for manufacturing the mask using the synthesized mask layout.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsu-Ting Huang, Ru-Gun Liu, Shinn-Sheng Yu
  • Publication number: 20200388706
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang CHEN, Chih-Ming LAI, Ching-Wei TSAI, Charles Chew-Yuen YOUNG, Jiann-Tyng TZENG, Kuo-Cheng CHIANG, Ru-Gun LIU, Wei-Hao WU, Yi-Hsiung LIN, Chia-Hao CHANG, Lei-Chun CHOU
  • Patent number: 10861790
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a source region and a drain region separated by a channel region within a substrate. A middle-end-of-the-line (MEOL) structure is over the drain region and a gate structure is over the channel region. The MEOL structure is vertically disposed between the drain region and a plane extending along an upper surface of the gate structure. A first interconnect wire is connected to the MEOL structure by a first conductive contact that is directly over the drain region and that extends between the first interconnect wire and the MEOL structure. A conductive strap is located over the first interconnect wire. The conductive strap connects the first interconnect wire to a power rail having a larger width than the first interconnect wire.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Kam-Tou Sio, Pin-Dai Sue, Ru-Gun Liu, Shih-Wei Peng, Wen-Hao Chen, Yung-Sung Yen, Chun-Kuang Chen
  • Patent number: 10861698
    Abstract: The present disclosure provides a method for semiconductor manufacturing in accordance with some embodiments. The method includes providing a substrate and a patterning layer over the substrate, wherein the substrate includes a plurality of features to receive a treatment process; forming at least one opening in the patterning layer, wherein the plurality of features is partially exposed in the at least one opening; applying a directional etching to expand the at least one opening in a first direction, thereby forming at least one expanded opening; and performing the treatment process to the plurality of features through the at least one expanded opening.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Tien Shen, Ya-Wen Yeh, Wei-Liang Lin, Ya Hui Chang, Yung-Sung Yen, Wei-Hao Wu, Li-Te Lin, Ru-Gun Liu, Kuei-Shun Chen
  • Patent number: 10860774
    Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 10847460
    Abstract: Examples of an integrated circuit a having an advanced two-dimensional (2D) metal connection with metal cut and methods of fabricating the same are provided. An example method for fabricating a conductive interconnection layer of an integrated circuit may include: patterning a conductive connector portion on the conductive interconnection layer of the integrated circuit using extreme ultraviolet (EUV) lithography, wherein the conductive connector portion is patterned to extend across multiple semiconductor structures in a different layer of the integrated circuit; and cutting the conductive connector portion into a plurality of conductive connector sections, wherein the conductive connector portion is cut by removing conductive material from the metal connector portion at one or more locations between the semiconductor structures.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: November 24, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Liang Chen, Cheng-Chi Chuang, Chih-Ming Lai, Chia-Tien Wu, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shun Li Chen, Shih-Wei Peng, Tien-Lu Lin
  • Patent number: 10833061
    Abstract: Gate structures extending continuously above a first active region, a second active region and a non-active region of a substrate of a semiconductor structure are arranged. At least one local interconnect over the non-active region and between two of the gate structures is selectively arranged, to couple at least one of contacts that is arranged above the first active region to at least one of the contacts that is arranged above the second active region.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 10, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Charles Chew-Yuen Young, Chih-Liang Chen, Chih-Ming Lai, Jiann-Tyng Tzeng, Shun-Li Chen, Kam-Tou Sio, Shih-Wei Peng, Chun-Kuang Chen, Ru-Gun Liu
  • Publication number: 20200350250
    Abstract: An integrated circuit includes a set of active regions in a substrate, a first set of conductive structures, a shallow trench isolation (STI) region, a set of gates and a first set of vias. The set of active regions extend in a first direction and is located on a first level. The first set of conductive structures and the STI region extend in at least the first direction or a second direction, is located on the first level, and is between the set of active regions. The STI region is between the set of active regions and the first set of conductive structures. The set of gates extend in the second direction and overlap the first set of conductive structures. The first set of vias couple the first set of conductive structures to the set of gates.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Pochun WANG, Ting-Wei CHIANG, Chih-Ming LAI, Hui-Zhong ZHUANG, Jung-Chan YANG, Ru-Gun LIU, Ya-Chi CHOU, Yi-Hsiung LIN, Yu-Xuan HUANG, Yu-Jung CHANG, Guo-Huei WU, Shih-Ming CHANG
  • Patent number: 10817635
    Abstract: Disclosed is a method of fabricating an integrated circuit (IC) using a multiple (N>2) patterning technique. The method provides a layout of the IC having a set of IC features. The method further includes deriving a graph from the layout, the graph having vertices connected by edges, the vertices representing the IC features, and the edges representing spacing between the IC features. The method further includes selecting vertices, wherein the selected vertices are not directly connected by an edge, and share at least one neighboring vertex that is connected by N edges. The method further includes using a computerized IC tool to merge the selected vertices, thereby reducing a number of edges connecting the neighboring vertex to be below N. The method further includes removing a portion of the vertices that are connected by less than N edges.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: October 27, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ken-Hsien Hsieh, Chih-Ming Lai, Ru-Gun Liu, Wen-Chun Huang, Wen-Li Cheng, Pai-Wei Wang
  • Patent number: 10818509
    Abstract: A method includes forming a material layer over a substrate, forming a first hard mask (HM) layer over the material layer, forming a first trench, along a first direction, in the first HM layer. The method also includes forming first spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a second HM layer over the material layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction and overlaps with the first trench. The method also includes etching the material layer through the third trench.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yung-Sung Yen, Chung-Ju Lee, Chun-Kuang Chen, Chia-Tien Wu, Ta-Ching Yu, Kuei-Shun Chen, Ru-Gun Liu, Shau-Lin Shue, Tsai-Sheng Gau, Yung-Hsu Wu
  • Publication number: 20200335507
    Abstract: A semiconductor device including fins arranged so that: in a situation in which any given first one of the fins (first given fin) is immediately adjacent any given second one of the fins (second given fin), and subject to fabrication tolerance, there is a minimum gap, Gmin, between the first and second given fins; and the first and second given fins a minimum pitch, Pmin, that falls in a range as follows: (Gmin+(?90%)*T1)?Pmin?(Gmin+(?110%)*T1).
    Type: Application
    Filed: July 1, 2020
    Publication date: October 22, 2020
    Inventors: Chih-Liang CHEN, Chih-Ming LAI, Charles Chew-Yuen YOUNG, Chin-Yuan TSENG, Jiann-Tyng TZENG, Kam-Tou SIO, Ru-Gun LIU, Wei-Liang LIN, L. C. CHOU
  • Publication number: 20200335340
    Abstract: A method of manufacturing a semiconductor device including operations of forming a first hard mask over an underlying layer on a substrate by a photolithographic and etching method, forming a sidewall spacer pattern having a first sidewall portion and a second sidewall portion on opposing sides of the first hard mask, etching the first sidewall portion, etching the first hard mask and leaving the second sidewall portion bridging a gap of the etched first hard mask, and processing the underlying layer using the second hard mask.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Shih-Chun HUANG, Chiu-Hsiang CHEN, Ya-Wen YEH, Yu-Tien SHEN, Po-Chin CHANG, Chien Wen LAI, Wei-Liang LIN, Ya Hui CHANG, Yung-Sung YEN, Li-Te LIN, Pinyen LIN, Ru-Gun LIU, Chin-Hsiang LIN
  • Patent number: 10796055
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 6, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 10790155
    Abstract: In a method of forming a groove pattern extending in a first axis in an underlying layer over a semiconductor substrate, a first opening is formed in the underlying layer, and the first opening is extended in the first axis by directional etching to form the groove pattern.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Gun Liu, Chih-Ming Lai, Wei-Liang Lin, Yung-Sung Yen, Ken-Hsien Hsieh, Chin-Hsiang Lin
  • Publication number: 20200301289
    Abstract: A method includes receiving a layout that includes a shape to be formed on a photomask and determining a plurality of target lithographic contours for the shape, wherein the plurality of target lithographic contours includes a first target lithographic contour for a first set of process conditions and a second target lithographic contour for a second set of process conditions, performing a lithographic simulation of the layout to produce a first simulated contour at the first set of process conditions and a second simulated contour at the second set of process conditions, determining a first edge placement error between the first simulated contour and the first target lithographic contour and a second edge placement error between the second simulated contour and the second target lithographic contour, and determining a modification to the layout based on the first edge placement error and the second edge placement error.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Dong-Yo Jheng, Ken-Hsien Hsieh, Shih-Ming Chang, Chih-Jie Lee, Shuo-Yen Chou, Ru-Gun Liu