Patents by Inventor Ru-Shang Hsiao

Ru-Shang Hsiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961731
    Abstract: A semiconductor structure includes a substrate, a conductive feature over the substrate, a dielectric layer over the conductive feature and the substrate, and a structure disposed over and electrically connected to the conductive feature. The structure is partially surrounded by the dielectric layer and includes a first metal-containing layer and a second metal-contain layer surrounded by the first metal-containing layer. The first and the second metal-containing layers include different materials. A lower portion of the first metal-containing layer includes a transition metal or a transition metal nitride and an upper portion of the first metal-containing layer includes a transition metal fluoride or a transition metal chloride.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Chun Hsiung Tsai, Clement Hsingjen Wann
  • Patent number: 11961891
    Abstract: A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pohan Kung, Ying Hsin Lu, I-Shan Huang
  • Patent number: 11949000
    Abstract: A method includes forming a dummy gate stack over a fin protruding from a semiconductor substrate, forming gate spacers on sidewalls of the dummy gate stack, forming source/features over portions of the fin, forming a gate trench between the gate spacers, which includes trimming top portions of the gate spacers to form a funnel-like opening in the gate trench, and forming a metal gate structure in the gate trench. A semiconductor structure includes a fin protruding from a substrate, a metal gate structure disposed over the fin, gate spacers disposed on sidewalls of the metal gate structure, where a top surface of each gate spacer is angled toward the semiconductor fin, a dielectric layer disposed over the top surface of each gate spacer, and a conductive feature disposed between the gate spacers to contact the metal gate structure, where sidewalls of the conductive feature contact the dielectric layer.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pin Chia Su, Ying Hsin Lu, I-Shan Huang
  • Publication number: 20240072158
    Abstract: A method of forming a FinFET is disclosed. The method includes depositing a conductive material across each of a number of adjacent fins, depositing a sacrificial mask over the conductive material, patterning the conductive material with the sacrificial mask to form a plurality of conductive material segments, depositing a sacrificial layer over the sacrificial mask, and patterning the sacrificial layer, where a portion of the patterned sacrificial layer remains over the sacrificial mask, where a portion of the sacrificial mask is exposed, and where the exposed portion of the sacrificial mask extends across each of the adjacent fins. The method also includes removing the portion of the sacrificial layer over the sacrificial mask, after removing the portion of the sacrificial layer over the sacrificial mask, removing the sacrificial mask, epitaxially growing a plurality of source/drain regions from the semiconductor substrate, and electrically connecting the source/drain regions to other devices.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao, Kuo-Min Lin, Z.X. Fan, Chun-Jung Huang, Wen-Yu Kuo
  • Patent number: 11855175
    Abstract: Semiconductor devices and methods of forming the same are provided. An example method includes providing a workpiece including a first dummy gate stack and a second dummy gate stack in a first area of the workpiece, a third dummy gate stack and a fourth dummy gate stack in a second area of the workpiece, a hard mask layer over each of the first dummy gate stack, the second dummy gate stack, the third dummy gate stack, and the fourth dummy gate stack. The method further includes depositing a photoresist (PR) layer over the workpiece to form a first PR layer portion over the first area and a second PR layer portion over the second area; and selectively forming a first opening through the second PR layer portion over the third dummy gate stack and a second opening through the second PR layer portion over the fourth dummy gate stack.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao
  • Publication number: 20230411537
    Abstract: Semiconductor devices having increased capacitance without increased fin height or increased chip area are disclosed. Grooves are formed across a width of the fin(s) to increase the overlapping surface area with the gate terminal, in particular with a length of the groove being less than or equal to the fin width. Methods of forming such grooved fins and semiconductor capacitor devices are also described.
    Type: Application
    Filed: July 27, 2023
    Publication date: December 21, 2023
    Inventors: Cheng-You Tai, Sung-Hsin Yang, Tsung Jing Wu, Jung-Chi Jeng, Ling-Sung Wang, Ru-Shang Hsiao
  • Publication number: 20230387230
    Abstract: A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pohan Kung, Ying Hsin Lu, I-Shan Huang
  • Publication number: 20230378376
    Abstract: Various embodiments of the present disclosure are directed towards a FinFET MOS capacitor. In some embodiments, the FinFET MOS capacitor comprises a substrate and a capacitor fin structure extending upwardly from an upper surface of the substrate. The capacitor fin structure comprises a pair of dummy source/drain regions separated by a dummy channel region and a capacitor gate structure straddling on the capacitor fin structure. The capacitor gate structure is separated from the capacitor fin structure by a capacitor gate dielectric.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao
  • Publication number: 20230352483
    Abstract: Semiconductor devices and methods are provided. A semiconductor device according to the present disclosure includes a first transistor in a first area and a second transistor in a second area. The first transistor includes a first gate structure extending lengthwise along a first direction, and a first gate spacer, a second gate spacer, and a third gate spacer over sidewalls of the first gate structure. The second transistor includes a second gate structure extending lengthwise along the first direction, and the first gate spacer and the third gate spacer over sidewalls of the second gate structure. The first gate spacer, the second gate spacer and the third gate spacer are of different compositions and the third gate spacer is directly on the first gate spacer in the second area.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao
  • Publication number: 20230335488
    Abstract: The present disclosure discloses a structure and a method directed to a semiconductor structure having a resistor structure and a metal-insulator-metal (MIM) capacitor structure formed by a single mask process. The semiconductor structure includes an interconnect structure on a substrate, a first insulating layer on the interconnect structure, first and second conductive plates on the first insulating layer and separated by a second insulating layer, a dielectric layer on the first conductive plate, and a third conductive plate on the dielectric layer. Bottom surfaces of the first and second conductive plates are coplanar.
    Type: Application
    Filed: July 21, 2022
    Publication date: October 19, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: RU-SHANG HSIAO, Po-Ying CHEN, CHEN-BIN LIN, JIE JAY SUN, I-SHAN HUANG
  • Publication number: 20230299117
    Abstract: A semiconductor image-sensing structure includes a semiconductor substrate having a sensor region and a circuitry region, a plurality of fin structures disposed in the circuitry region, a mesa structure disposed in the sensor region, a first gate structure disposed over the plurality of fin structures in the circuitry region, and a second gate structure disposed over the mesa structure in the sensor region. The plurality of fin structures and the mesa structure include a same semiconductor material.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Inventors: SUNG-HSIN YANG, JUNG-CHI JENG, RU-SHANG HSIAO
  • Publication number: 20230299213
    Abstract: Semiconductor devices having increased capacitance without increased fin height or increased chip area are disclosed. Grooves are formed across a width of the fin(s) to increase the overlapping surface area with the gate terminal, in particular with a length of the groove being less than or equal to the fin width. Methods of forming such grooved fins and semiconductor capacitor devices are also described.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Cheng-You Tai, Ling-Sung Wang, Ru-Shang Hsiao, Jung-Chi Jeng, Sung-Hsin Yang, Tsung Jing Wu
  • Patent number: 11699702
    Abstract: Semiconductor devices and methods are provided. A semiconductor device according to the present disclosure includes a first transistor in a first area and a second transistor in a second area. The first transistor includes a first gate structure extending lengthwise along a first direction, and a first gate spacer, a second gate spacer, and a third gate spacer over sidewalls of the first gate structure. The second transistor includes a second gate structure extending lengthwise along the first direction, and the first gate spacer and the third gate spacer over sidewalls of the second gate structure. The first gate spacer, the second gate spacer and the third gate spacer are of different compositions and the third gate spacer is directly on the first gate spacer in the second area.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao
  • Publication number: 20230207650
    Abstract: The present disclosure provides a semiconductor structure in accordance with some embodiment. The semiconductor structure includes a semiconductor substrate having a first circuit region and a second circuit region; active regions extended from the semiconductor substrate and surrounded by isolation features; first transistors that include first gate stacks formed on the active regions and disposed in the first circuit region, the first gate stacks having a first gate pitch less than a reference pitch; and second transistors that include second gate stacks formed on the active regions and disposed in the second circuit region, the second gate stacks having a second pitch greater than the reference pitch. The second transistors are high-frequency transistors and the first transistors are logic transistors.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Inventors: Ru-Shang Hsiao, Ying Hsin Lu, Ching-Hwanq Su, Pin Chia Su, Ling-Sung Wang
  • Publication number: 20230207693
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor substrate. The semiconductor device includes an isolation structure in the semiconductor substrate. The isolation structure surrounds an active region of the semiconductor substrate. The semiconductor device includes a gate over the semiconductor substrate. The gate is across the active region and extends onto the isolation structure. The semiconductor device includes a support film over the isolation structure. The support film is a continuous film which continuously covers the isolation structure and the gate over the isolation structure.
    Type: Application
    Filed: March 2, 2023
    Publication date: June 29, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Chi JENG, I-Chih CHEN, Wen-Chang KUO, Ying-Hao CHEN, Ru-Shang HSIAO, Chih-Mu HUANG
  • Patent number: 11658230
    Abstract: A method for forming a semiconductor structure is provided. The method includes the following operations. A substrate is received. A fin structure is formed on the substrate, and a dielectric layer is formed over the fin structure. A sacrificial gate is formed over the substrate. A portion of the dielectric layer is exposed through the sacrificial gate. Recesses are formed in the fin structure at two sides of the sacrificial gate. A cleaning operation is performed with an HF-containing plasma. The HF-containing plasma includes HF and NH3.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chun Hsiung Tsai, Ru-Shang Hsiao, Clement Hsingjen Wann
  • Publication number: 20230154922
    Abstract: A structure includes a bulk semiconductor substrate, a first plurality of dielectric isolation regions over the bulk semiconductor substrate, a plurality of semiconductor fins protruding higher than the first plurality of dielectric isolation regions, a first gate stack on top surfaces and sidewalls of the plurality of semiconductor fins, a second plurality of dielectric isolation regions over the bulk semiconductor substrate, a mesa structure in the second plurality of dielectric isolation regions, and a second gate stack over the mesa structure. Top surfaces of the first gate stack and the second gate stack are coplanar with each other.
    Type: Application
    Filed: March 17, 2022
    Publication date: May 18, 2023
    Inventors: Sung-Hsin Yang, Ru-Shang Hsiao, Ching-Hwanq Su, Chen-Bin Lin, Wen-Hsin Chan
  • Publication number: 20230145694
    Abstract: Analog and logic devices may coexist on a common integrated circuit chip, accommodating features with different pitches, linewidths, and pattern densities. Such differences in design and layout at various layers during manufacturing can cause process loading by contributing different amounts of reactants to surface chemical reactions. Such variation in the balance of chemical reactants can result in disparities in film thicknesses within the chip that can affect device performance. Embodiments of the present disclosure disclose a masking sequence that can alleviate process loading disparities during an undercut etch process adjacent to polysilicon structures.
    Type: Application
    Filed: June 10, 2022
    Publication date: May 11, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ling Wu, Ru-Shang Hsiao, I-Shan Huang, Ying Hsin Lu, C.J. Wu
  • Patent number: 11600727
    Abstract: A method for forming a semiconductor device is provided. The method includes forming an isolation structure in a semiconductor substrate. The method includes forming a gate over the semiconductor substrate. The method includes forming a support film over the isolation structure. The support film is a continuous film which continuously covers the isolation structure and the gate over the isolation structure, the support film conformally covers a first portion of a top surface and a second portion of a first sidewall of the gate, the top surface faces away from the semiconductor substrate, the support film and a topmost surface of the active region do not overlap with each other, and the topmost surface faces the gate. The method includes after forming the support film, forming lightly doped regions in the semiconductor substrate and at two opposite sides of the gate.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Chi Jeng, I-Chih Chen, Wen-Chang Kuo, Ying-Hao Chen, Ru-Shang Hsiao, Chih-Mu Huang
  • Publication number: 20230067587
    Abstract: A semiconductor device includes a semiconductor substrate. The semiconductor device includes a first three-dimensional semiconductor structure of a first conductivity type protruding from a surface of the semiconductor substrate. The semiconductor device includes a second three-dimensional semiconductor structure of a second conductivity type protruding from the surface of the semiconductor substrate. The semiconductor device includes a first transistor having a first source/drain structure formed in the first three-dimensional semiconductor structure, a second source/drain structure formed in the second three-dimensional semiconductor structure, a first gate structure straddling a first portion of the first three-dimensional semiconductor structure and a first portion of the second three-dimensional semiconductor structure, and a second gate structure straddling a second portion of the second three-dimensional semiconductor structure.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hsin Yang, Jung-Chi Jeng, Ru-Shang Hsiao