Patents by Inventor Ru YIN

Ru YIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240086633
    Abstract: A method for generating and outputting a message is implemented using an electronic device the stores a computer program product and a text database. The text database includes a main message template, a template text that includes a placeholder, and a word group that includes a plurality of preset words for replacing the placeholder. The method includes: in response to receipt of a command for execution of the computer program product, displaying an editing interface including the main message template; in response to receipt of user operation of a selection of the main message template, displaying the template text; in response to receipt of user operation of a selection of one of the preset words via the user interface, generating an edited text by replacing the placeholder with the one of the preset words in the template text; and outputting the edited text as a message.
    Type: Application
    Filed: April 25, 2023
    Publication date: March 14, 2024
    Inventors: Yi-Ru CHIU, Ting-Yi LI, Hong-Xun WANG, Jin-Lin CHEN, Chih-Hsuan YEH, Chia-Chi YIN, Wei-Ting LI, Po-Lun CHANG
  • Publication number: 20220011960
    Abstract: Per channel thermal management techniques are described herein. In one example, a memory controller receives channel temperature information for one or more channels of one or more dies in the stack. The memory controller can then throttle commands at a channel-level based on the channel temperature information. In one example, row commands and column commands to a channel are throttled at independent rates based on the channel temperature information. In one example, a row command throttling rate or column command throttling rate is based on a ratio of alternating on-time to off time of throttling signals, or a window of time in which commands are enabled or disabled to a channel. In one example, the row and column command throttling signals can be staggered across channels or pseudo channels.
    Type: Application
    Filed: September 25, 2021
    Publication date: January 13, 2022
    Inventors: Chang Kian TAN, Ru Yin NG, Saravanan SETHURAMAN, Kuljit S. BAINS
  • Patent number: 10519203
    Abstract: A gene for biosynthesis of core structure of ophiobolin, the gene being the AuOS gene of Aspergillus sp. 094102, deposited with the accession number CCTCC No: M208153, the gene sequence thereof being shown as SEQ ID NO. 1. Also provided is a method of preparation of ophiobolin using the gene.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: December 31, 2019
    Assignee: WUHAN UNIVERSITY
    Inventors: Kui Hong, Huiying Meng, Hangzhen Chai, Ru Yin, Zixin Deng
  • Patent number: 10146249
    Abstract: A control system controls First-In First-Out (FIFO) settings of a receiving system. The control system includes a FIFO settings controller that receives a first signal indicative of a first frequency of data received by the receiving system. The FIFO settings controller receives a second signal indicative of a second frequency of a clock that reads the data received by the receiving system. The FIFO settings controller determines a difference (e.g., a parts-per-million (PPM) difference) between the first frequency and the second frequency. The FIFO settings controller sends a third signal indicative of instructions to adjust FIFO configuration settings based on the PPM difference.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 4, 2018
    Assignee: Altera Corporation
    Inventors: Han Hua Leong, Ru Yin Ng, Geok Sun Chong, David W. Mendel
  • Publication number: 20180088622
    Abstract: A control system controls First-In First-Out (FIFO) settings of a receiving system. The control system includes a FIFO settings controller that receives a first signal indicative of a first frequency of data received by the receiving system. The FIFO settings controller receives a second signal indicative of a second frequency of a clock that reads the data received by the receiving system. The FIFO settings controller determines a difference (e.g., a parts-per-million (PPM) difference) between the first frequency and the second frequency. The FIFO settings controller sends a third signal indicative of instructions to adjust FIFO configuration settings based on the PPM difference.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: Han Hua Leong, Ru Yin Ng, Geok Sun Chong, David W. Mendel
  • Patent number: 9891653
    Abstract: An integrated circuit die includes interface and adapter circuits. The interface circuit exchanges data with an external device outside the integrated circuit die using a first clock signal. The interface circuit has a clock signal generation circuit to generate the first clock signal based on a second clock signal. The adapter circuit exchanges the data with the interface circuit. A frequency of the second clock signal is changed in response to an indication of a change in a data rate of the data. The adapter circuit causes the interface circuit to provide an adjustment to the first clock signal after the frequency of the second clock signal changes. The adapter circuit prevents the exchange of the data between the interface circuit and the external device until the adapter circuit receives an indication of completion of the adjustment to the first clock signal.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 13, 2018
    Assignee: Altera Corporation
    Inventors: Ru Yin Ng, Gary Wallichs, Keith Duwel
  • Publication number: 20180009855
    Abstract: A gene for biosynthesis of core structure of ophiobolin, the gene being the AuOS gene of Aspergillus sp. 094102, deposited with the accession number CCTCC No: M208153, the gene sequence thereof being shown as SEQ ID NO. 1. Also provided is a method of preparation of ophiobolin using the gene.
    Type: Application
    Filed: September 22, 2017
    Publication date: January 11, 2018
    Inventors: Kui HONG, Huiying MENG, Hangzhen CHAI, Ru YIN, Zixin DENG
  • Publication number: 20160363954
    Abstract: An integrated circuit die includes interface and adapter circuits. The interface circuit exchanges data with an external device outside the integrated circuit die using a first clock signal. The interface circuit has a clock signal generation circuit to generate the first clock signal based on a second clock signal. The adapter circuit exchanges the data with the interface circuit. A frequency of the second clock signal is changed in response to an indication of a change in a data rate of the data. The adapter circuit causes the interface circuit to provide an adjustment to the first clock signal after the frequency of the second clock signal changes. The adapter circuit prevents the exchange of the data between the interface circuit and the external device until the adapter circuit receives an indication of completion of the adjustment to the first clock signal.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Applicant: ALTERA CORPORATION
    Inventors: Ru Yin Ng, Gary Wallichs, Keith Duwel
  • Publication number: 20160235669
    Abstract: The present invention provides a process for preparing a water dispersion containing a high concentration of nano/submicron, hydrophobic, functional compounds. The process is carried out by using a complex stabilizer having an HLB value of about 10 to about 17, comprising lecithin and at least one non-phospholipid selected from polysorbate, sucrose ester, and polyglycerol fatty acid ester; selecting a specific weight ratio of the hydrophobic functional compounds and the stabilizer; and using homogenization technique, media milling technique, and/or centrifugal technique. The water dispersion containing a high concentration of nano/submicron, hydrophobic, functional compound produced by the process of the invention has stable dispersibility and improved bioavailability, and can be applied to the fields of foods and pharmaceuticals.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: RU-YIN CHEN, CHUNG-JEN CHEN, YI-JIE TSAI, JIA-JIU WU, CHIH-PING HUANG, CHUNG-LIANG CHU
  • Patent number: 8673654
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: March 18, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20120244134
    Abstract: The present invention provides a process for preparing an aqueous dispersion containing a high concentration of nano/submicron, hydrophobic, functional compounds. The process is carried out by using a complex stabilizer having an HLB value of about 10 to about 17, comprising lecithin and at least one non-phospholipid selected from polysorbate, sucrose ester, and polyglycerol fatty acid ester; selecting a specific weight ratio of the hydrophobic functional compounds and the stabilizer; and using homogenization technique, media milling technique, and/or centrifugal technique. The aqueous dispersion containing a high concentration of nano/submicron, hydrophobic, functional compound produced by the process of the invention has stable dispersibility and improved bioavailability, and can be applied to the fields of foods and pharmaceuticals.
    Type: Application
    Filed: July 19, 2011
    Publication date: September 27, 2012
    Inventors: Ru-Yin CHEN, Chung-Jen CHEN, Yi-Jie TSAI, Jia-Jiu WU, Chih-Ping HUANG, Chung-Liang CHU
  • Patent number: 7999360
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer of NiCr, NiFe, or NiFeCr layer on the oc-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: August 16, 2011
    Assignees: Headway Technologies, Inc., MagIC Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20100047929
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 25, 2010
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20100044680
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 25, 2010
    Inventors: LIUBO HONG, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Patent number: 7611912
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: November 3, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Publication number: 20060002184
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the ?-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong