Patents by Inventor Ruby Chen

Ruby Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11422350
    Abstract: System for acquiring a digital image of a sample on a microscope slide. In an embodiment, the system comprises a stage configured to support a sample, an objective lens having a single optical axis that is orthogonal to the stage, an imaging sensor, and a focusing sensor. The system further comprises at least one beam splitter optically coupled to the objective lens and configured to receive a field of view corresponding to the optical axis of the objective lens, and simultaneously provide at least a first portion of the field of view to the imaging sensor and at least a second portion of the field of view to the focusing sensor. The focusing sensor may simultaneously acquire image(s) at a plurality of different focal distances and/or simultaneously acquire a pair of mirrored images, each comprising pixels acquired at a plurality of different focal distances.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: August 23, 2022
    Assignee: Leica Biosystems Imaging, Inc.
    Inventors: Yunlu Zou, Allen Olson, Kiran Saligrama, Ruby Chen, Peyman Najmabadi, Greg Crandall
  • Publication number: 20200218053
    Abstract: System for acquiring a digital image of a sample on a microscope slide. In an embodiment, the system comprises a stage configured to support a sample, an objective lens having a single optical axis that is orthogonal to the stage, an imaging sensor, and a focusing sensor. The system further comprises at least one beam splitter optically coupled to the objective lens and configured to receive a field of view corresponding to the optical axis of the objective lens, and simultaneously provide at least a first portion of the field of view to the imaging sensor and at least a second portion of the field of view to the focusing sensor. The focusing sensor may simultaneously acquire image(s) at a plurality of different focal distances and/or simultaneously acquire a pair of mirrored images, each comprising pixels acquired at a plurality of different focal distances.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Yunlu ZOU, Allen OLSON, Kiran SALIGRAMA, Ruby CHEN, Peyman NAJMABADI, Greg CRANDALL
  • Patent number: 10634894
    Abstract: System for acquiring a digital image of a sample on a microscope slide. In an embodiment, the system comprises a stage configured to support a sample, an objective lens having a single optical axis that is orthogonal to the stage, an imaging sensor, and a focusing sensor. The system further comprises at least one beam splitter optically coupled to the objective lens and configured to receive a field of view corresponding to the optical axis of the objective lens, and simultaneously provide at least a first portion of the field of view to the imaging sensor and at least a second portion of the field of view to the focusing sensor. The focusing sensor may simultaneously acquire image(s) at a plurality of different focal distances and/or simultaneously acquire a pair of mirrored images, each comprising pixels acquired at a plurality of different focal distances.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 28, 2020
    Assignee: LEICA BIOSYSTEMS IMAGING, INC.
    Inventors: Yunlu Zou, Allen Olson, Kiran Saligrama, Ruby Chen, Peyman Najmabadi, Greg Crandall
  • Patent number: 10591710
    Abstract: System for acquiring a digital image of a sample on a microscope slide. In an embodiment, the system comprises a stage configured to support a sample, an objective lens having a single optical axis that is orthogonal to the stage, an imaging sensor, and a focusing sensor. The system further comprises at least one beam splitter optically coupled to the objective lens and configured to receive a field of view corresponding to the optical axis of the objective lens, and simultaneously provide at least a first portion of the field of view to the imaging sensor and at least a second portion of the field of view to the focusing sensor. The focusing sensor may simultaneously acquire image(s) at a plurality of different focal distances and/or simultaneously acquire a pair of mirrored images, each comprising pixels acquired at a plurality of different focal distances.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 17, 2020
    Assignee: LEICA BIOSYSTEMS IMAGING, INC.
    Inventors: Yunlu Zou, Allen Olson, Kiran Saligrama, Ruby Chen, Peyman Najmabadi, Greg Crandall
  • Publication number: 20180275388
    Abstract: System for acquiring a digital image of a sample on a microscope slide. In an embodiment, the system comprises a stage configured to support a sample, an objective lens having a single optical axis that is orthogonal to the stage, an imaging sensor, and a focusing sensor. The system further comprises at least one beam splitter optically coupled to the objective lens and configured to receive a field of view corresponding to the optical axis of the objective lens, and simultaneously provide at least a first portion of the field of view to the imaging sensor and at least a second portion of the field of view to the focusing sensor. The focusing sensor may simultaneously acquire image(s) at a plurality of different focal distances and/or simultaneously acquire a pair of mirrored images, each comprising pixels acquired at a plurality of different focal distances.
    Type: Application
    Filed: September 23, 2016
    Publication date: September 27, 2018
    Inventors: Yunlu ZOU, Allen OLSON, Kiran SALIGRAMA, Ruby CHEN, Peyman NAJMABADI, Greg CRANDALL
  • Patent number: 9783634
    Abstract: A method of making a fluorothieno[3,4-b]thiophene derivatives and photovoltaic polymers containing same using 3-bromothiophene-2-carboxylic acid as a starting material. This synthetic route provides an easier synthesis as well as greater yield and a purer product, which produces superior results over the prior art less pure products. The resulting materials can be used in a variety of photovoltaic applications and devices, especially solar cells.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: October 10, 2017
    Assignees: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Shuangxi Wang, Chenjun Shi, Ruby Chen, Junlian Zhang, Wei Wang, Yue Wu, Hui Huang, Amit Palkar, Ting He
  • Patent number: 9691986
    Abstract: Compositions, synthesis and applications for furan, thiophene and selenophene derivatized benzo[1,2-b:3,4-b?]dithiophene(BDT)-thienothiophene (BDT-TT) based polymers, namely, poly[(4,8-bis(5-(2-ethyhexyl)selenophen-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-3-fluorothieno[3,4-b]thiophene)-2-6-diyl (CS-15), poly[(4,8-bis(5-(2-ethyhexyl)selenophen-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl (CS-16), poly[(4,8-bis(5-(2-ethyhexyl)furan-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl (CS-18) and poly[(4,8-bis(5-hexylfuran-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-3-fluorothieno[3,4-b]thiophene)-2-6-diyl (CS-24) are disclosed. Further, an organic solar cell constructed of a derivatized benzo[1,2-b:3,4-b?]dithiophene(BDT)-thienothiophene (BDT-TT) based polymer is discussed.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: June 27, 2017
    Assignees: Solarmer Energy, Inc., Phillips 66 Company
    Inventors: Wei Wang, Chenjun Shi, Ruby Chen, Jun Yang, Yue Wu, Hui Huang, Kathy Woody, Joe Bullock, Amit Palkar, Ting He
  • Patent number: 9214635
    Abstract: Compositions, synthesis and applications for benzene, furan, thiophene, selenophene, pyrole, pyran, pyridine, oxazole, thiazole and imidazole derivatized anthra[2,3-b:6,7-b?]dithiophene (ADT) based polymers, namely, poly{5,11-bis(5-(2-ethylhexyl)thiophen-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl}, poly{5,11-bis(5-(2-ethylhexyl)furan-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl and poly{5,11-bis(5-(2-ethylhexyl)selenophen-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl} are disclosed. Further, an organic solar cell constructed of a derivatized anthra[2,3-b:6,7-b?]dithiophene (ADT) based polymer is discussed.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: December 15, 2015
    Assignees: Phillips 66 Company, Solarmer Energy, Inc.
    Inventors: Chenjun Shi, Ruby Chen, Jun Yang, Christopher S. Daeffler, Janice Hawkins, Yue Wu, Wei Wang, Kathy Woody, Joe Bullock, Hui Huang, Amit Palkar, Ting He
  • Publication number: 20150210800
    Abstract: A method of making a fluorothieno[3,4-b]thiophene derivatives and photovoltaic polymers containing same using 3-bromothiophene-2-carboxylic acid as a starting material. This synthetic route provides an easier synthesis as well as greater yield and a purer product, which produces superior results over the prior art less pure products. The resulting materials can be used in a variety of photovoltaic applications and devices, especially solar cells.
    Type: Application
    Filed: March 6, 2015
    Publication date: July 30, 2015
    Applicants: Phillips 66 Company, Solarmer Energy, Inc.
    Inventors: Shuangxi Wang, Chenjun Shi, Ruby Chen, Junlian Zhang, Wei Wang, Yue Wu, Hui Huang, Amit Palkar, Ting He
  • Publication number: 20150136224
    Abstract: Compositions, synthesis and applications for benzene, furan, thiophene, selenophene, pyrole, pyran, pyridine, oxazole, thiazole and imidazole derivatized anthra[2,3-b:6,7-b?]dithiophene (ADT) based polymers, namely, poly{5,11-bis(5-(2-ethylhexyl)thiophen-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl}, poly{5,11-bis(5-(2-ethylhexyl)furan-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl and poly{5,11-bis(5-(2-ethylhexyl)selenophen-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl} are disclosed. Further, an organic solar cell constructed of a derivatized anthra[2,3-b:6,7-b?]dithiophene (ADT) based polymer is discussed.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 21, 2015
    Applicants: Phillips 66 Company, Solarmer Energy, Inc.
    Inventors: Chenjun Shi, Ruby Chen, Jun Yang, Christopher S. Daeffler, Janice Hawkins, Yue Wu, Wei Wang, Kathy Woody, Joe Bullock, Hui Huang, Amit Palkar, Ting He
  • Patent number: 9006568
    Abstract: A method of making a fluorothieno[3,4-b]thiophene derivatives and photovoltaic polymers containing same using 3-bromothiophene-2-carboxylic acid as a starting material. This synthetic route provides an easier synthesis as well as greater yield and a purer product, which produces superior results over the prior art less pure products. The resulting materials can be used in a variety of photovoltaic applications and devices, especially solar cells.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 14, 2015
    Assignees: Phillips 66 Company, Solarmer Energy, Inc.
    Inventors: Shuangxi Wang, Chenjun Shi, Ruby Chen, Junlian Zhang, Hui Huang, Yue Wu, Wei Wang, Amit Palkar, Ting He
  • Publication number: 20140151657
    Abstract: Compositions, synthesis and applications for furan, thiophene and selenophene derivatized benzo[1,2-b:3,4-b?]dithiophene(BDT)-thienothiophene (BDT-TT) based polymers, namely, poly[(4,8-bis(5-(2-ethyhexyl)selenophen-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-3-fluorothieno[3,4-b]thiophene)-2-6-diyl (CS-15), poly[(4,8-bis(5-(2-ethyhexyl)selenophen-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl (CS-16), poly[(4,8-bis(5-(2-ethyhexyl)furan-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl (CS-18) and poly[(4,8-bis(5-hexylfuran-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-3-fluorothieno[3,4-b]thiophene)-2-6-diyl (CS-24) are disclosed. Further, an organic solar cell constructed of a derivatized benzo[1,2-b:3,4-b?]dithiophene(BDT)-thienothiophene (BDT-TT) based polymer is discussed.
    Type: Application
    Filed: November 19, 2013
    Publication date: June 5, 2014
    Applicants: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Wei Wang, Chenjun Shi, Ruby Chen, Jun Yang, Yue Wu, Hui Huang, Kathy Woody, Joe Bullock, Amit Palkar, Ting He
  • Publication number: 20130214213
    Abstract: A method of making a fluorothieno[3,4-b]thiophene derivatives and photovoltaic polymers containing same using 3-bromothiophene-2-carboxylic acid as a starting material. This synthetic route provides an easier synthesis as well as greater yield and a purer product, which produces superior results over the prior art less pure products. The resulting materials can be used in a variety of photovoltaic applications and devices, especially solar cells.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 22, 2013
    Applicants: Solarmer Energy, Inc., Phillips 66 Company
    Inventors: Shuangxi Wang, Chenjun Shi, Ruby Chen, Junlian Zhang, Hui Huang, Yue Wu, Wei Wang, Amit Palkar, Ting He