Patents by Inventor Ruby L. Curtis

Ruby L. Curtis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9701801
    Abstract: A process includes combining a metallocene catalyzed polypropylene with a nucleator and a slip agent to form a composition, and forming a cast film from the composition. The slip agent may exhibit an increased slip bloom rate within the cast film relative to the slip bloom rate exhibited by the slip agent in an otherwise identical cast film in which the nucleator is not present in the cast film. The cast film may exhibit a coefficient of friction that is less than a coefficient of friction of an otherwise identical cast film in which the nucleator is not present in the cast film.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: July 11, 2017
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Mark Leland, Ruby L. Curtis
  • Publication number: 20170130015
    Abstract: A process includes combining a metallocene catalyzed polypropylene with a nucleator and a slip agent to form a composition, and forming a cast film from the composition. The slip agent may exhibit an increased slip bloom rate within the cast film relative to the slip bloom rate exhibited by the slip agent in an otherwise identical cast film in which the nucleator is not present in the cast film. The cast film may exhibit a coefficient of friction that is less than a coefficient of friction of an otherwise identical cast film in which the nucleator is not present in the cast film.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 11, 2017
    Inventors: Mark Leland, Ruby L. Curtis
  • Patent number: 9359494
    Abstract: A blown film composition including a first high density polyethylene component and a second high density polyethylene component, wherein the blown film contains a mixture of three or more discrete molecular weight distributions, and wherein the second high density polyethylene component has at least one more discrete molecular weight distribution than the first high density polyethylene component.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: June 7, 2016
    Assignee: Fina Technology, Inc.
    Inventors: Michael McLeod, Marco Araya, Ruby L. Curtis, John Ashbaugh, Leonardo Cortes
  • Patent number: 9187628
    Abstract: A blown film composition including a first high density polyethylene component and a second high density polyethylene component, wherein the blown film contains a mixture of three or more discrete molecular weight distributions, and wherein the second high density polyethylene component has at least one more discrete molecular weight distribution than the first high density polyethylene component.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: November 17, 2015
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Michael McLeod, Marco Araya, Ruby L. Curtis, John Ashbaugh, Leonardo Cortes
  • Publication number: 20150166775
    Abstract: A blown film composition including a first high density polyethylene component and a second high density polyethylene component, wherein the blown film contains a mixture of three or more discrete molecular weight distributions, and wherein the second high density polyethylene component has at least one more discrete molecular weight distribution than the first high density polyethylene component.
    Type: Application
    Filed: February 25, 2015
    Publication date: June 18, 2015
    Inventors: Michael McLeod, Marco Araya, Ruby L. Curtis, John Ashbaugh, Leonardo Cortes
  • Patent number: 8859703
    Abstract: Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 14, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Steven Gray, David Knoeppel, Cyril Chevillard, David Rauscher, Carlos Corleto, Gerhard Guenther, Brian B. Cole, Stan Biesert, Vincent Barre, Ruby L. Curtis, Son Nguyen, Danielle Childress
  • Patent number: 8829094
    Abstract: A blown film composition including an impact copolymer polypropylene component and a nucleating agent, wherein the blown film has improved processing and physical properties.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: September 9, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Ruby L. Curtis, Mark Leland, John Ashbaugh, Jay Nguyen
  • Publication number: 20120091621
    Abstract: Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 glee to 0.960 glee, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 glee to 0.960 Wee and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SET) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 19, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Tim Coffy, Steven Gray, David Knoeppel, Cyril Chevillard, David Rauscher, Carlos Corleto, Gerhard Guenther, Brian B. Cole, Stan Biesert, Vincent Barre, Ruby L. Curtis, Son Nguyen, Danielle Childress
  • Patent number: 8026305
    Abstract: Polymer articles and processes of forming the same are described herein. The processes generally include providing an ethylene based polymer, blending the ethylene based polymer with a modifier to form modified polyethylene and forming the modified polyethylene into a polymer article, wherein the polymer article exhibits a haze that is at least about 10% less than a polymer article prepared with a similarly modified polyethylene.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: September 27, 2011
    Assignee: Fina Technology Inc
    Inventors: Michael McLeod, John Ashbaugh, Cyril Chevillard, Gerhard Guenther, Ruby L. Curtis, Jay Nguyen, Juan Aguirre, Raleigh McBride, Ben Hicks
  • Publication number: 20100267909
    Abstract: Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
    Type: Application
    Filed: May 11, 2010
    Publication date: October 21, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Tim Coffy, Steven Gray, David Knoeppel, Cyril Chevillard, David Rauscher, Carlos Corleto, Gerhard Guenther, Brian B. Cole, Stan Biesert, Vincent Barre, Ruby L. Curtis, Son Nguyen, Danielle Childress
  • Publication number: 20100159173
    Abstract: Polymer articles and processes of forming the same are described herein. The processes generally include providing a bimodal ethylene based polymer, blending the bimodal ethylene based polymer with a nucleator to form modified polyethylene and forming the modified polyethylene into a polymer article, wherein the polymer article is selected from pipe articles and blown films.
    Type: Application
    Filed: April 7, 2009
    Publication date: June 24, 2010
    Applicant: Fina Technology, Inc.
    Inventors: John Ashbaugh, Brian B. Cole, David Rauscher, Gerhard Guenther, Michael McLeod, Ruby L. Curtis