Patents by Inventor Ruchi PARIKH

Ruchi PARIKH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10498214
    Abstract: In an embodiment, an amplifier includes first, second, and third stages, and a feedback network. The first stage has a first passband and is configured to generate a first output signal in response to first and second input signals, and the second stage has a second passband that is higher in frequency than the first passband and is configured to generate a second output signal in response to third and fourth input signals. The third stage has a first input node coupled to receive the first output signal, a second input node coupled to receive the second output signal, and an output node. And the feedback network is coupled between the second input node and the output node of the third stage. For example, where the first, second, and third stages are respective operational-transconductance-amplifier stages, such an amplifier may be suitable for low-power applications.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: December 3, 2019
    Assignee: Renesas Electronics America Inc.
    Inventors: Seenu Gopalraju, Rhys Philbrick, Ruchi Parikh
  • Patent number: 10439409
    Abstract: An enhanced parallel protection circuit is provided. A system using separate battery packs in a parallel configuration is arranged with multiple protection circuit modules (PCMs). The PCMs are configured to detect fault conditions, such as over voltage, under voltage, excess current, etc. The PCMs can be configured to control associated switches and/or other components. When a fault condition is detected by an individual PCM, the individual PCM transitions to a fault state, and the PCM triggers an output causing one or more actions, e.g., causing a device to shut down or isolate one or more components. In addition, by the use of the techniques disclosed herein, the individual PCM can generate a control signal that causes other PCMs to transition to a fault state. The individual PCM can also receive a control signal from another PCM to cause the individual PCM to transition to a fault state.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: October 8, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Julian Binder, Daniel Chian, Eugene Shoykhet, Ruchi Parikh
  • Publication number: 20180367022
    Abstract: In an embodiment, an amplifier includes first, second, and third stages, and a feedback network. The first stage has a first passband and is configured to generate a first output signal in response to first and second input signals, and the second stage has a second passband that is higher in frequency than the first passband and is configured to generate a second output signal in response to third and fourth input signals. The third stage has a first input node coupled to receive the first output signal, a second input node coupled to receive the second output signal, and an output node. And the feedback network is coupled between the second input node and the output node of the third stage. For example, where the first, second, and third stages are respective operational-transconductance-amplifier stages, such an amplifier may be suitable for low-power applications.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Seenu GOPALRAJU, Rhys PHILBRICK, Ruchi PARIKH
  • Patent number: 10063130
    Abstract: In an embodiment, an amplifier includes first, second, and third stages, and a feedback network. The first stage has a first passband and is configured to generate a first output signal in response to first and second input signals, and the second stage has a second passband that is higher in frequency than the first passband and is configured to generate a second output signal in response to third and fourth input signals. The third stage has a first input node coupled to receive the first output signal, a second input node coupled to receive the second output signal, and an output node. And the feedback network is coupled between the second input node and the output node of the third stage. For example, where the first, second, and third stages are respective operational-transconductance-amplifier stages, such an amplifier may be suitable for low-power applications.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: August 28, 2018
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Seenu Gopalraju, Rhys Philbrick, Ruchi Parikh
  • Publication number: 20170302064
    Abstract: An enhanced parallel protection circuit is provided. A system using separate battery packs in a parallel configuration is arranged with multiple protection circuit modules (PCMs). The PCMs are configured to detect fault conditions, such as over voltage, under voltage, excess current, etc. The PCMs can be configured to control associated switches and/or other components. When a fault condition is detected by an individual PCM, the individual PCM transitions to a fault state, and the PCM triggers an output causing one or more actions, e.g., causing a device to shut down or isolate one or more components. In addition, by the use of the techniques disclosed herein, the individual PCM can generate a control signal that causes other PCMs to transition to a fault state. The individual PCM can also receive a control signal from another PCM to cause the individual PCM to transition to a fault state.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Julian Binder, Daniel Chian, Eugene Shoykhet, Ruchi Parikh
  • Patent number: 9740218
    Abstract: In an embodiment, a power-supply controller includes a switching regulator and a current limiter. The switching regulator is configured to generate an input current such that an output voltage is generated in response to the input current and an input voltage, and the current limiter is configured to limit the input current in response to a quantity that is related to a ratio of the output voltage divided by the input voltage. For example, an embodiment of such a power-supply controller may be able to limit the output or load current from a power supply to a set level by limiting the input current in response to a quantity that is related to the ratio (e.g., the boost ratio) of the output voltage to the input voltage.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 22, 2017
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Marc Ethan Dagan, Ruchi Parikh
  • Publication number: 20160087595
    Abstract: In an embodiment, an amplifier includes first, second, and third stages, and a feedback network. The first stage has a first passband and is configured to generate a first output signal in response to first and second input signals, and the second stage has a second passband that is higher in frequency than the first passband and is configured to generate a second output signal in response to third and fourth input signals. The third stage has a first input node coupled to receive the first output signal, a second input node coupled to receive the second output signal, and an output node. And the feedback network is coupled between the second input node and the output node of the third stage. For example, where the first, second, and third stages are respective operational-transconductance-amplifier stages, such an amplifier may be suitable for low-power applications.
    Type: Application
    Filed: June 17, 2015
    Publication date: March 24, 2016
    Inventors: Seenu GOPALRAJU, Rhys PHILBRICK, Ruchi PARIKH
  • Publication number: 20140125303
    Abstract: In an embodiment, a power-supply controller includes a switching regulator and a current limiter. The switching regulator is configured to generate an input current such that an output voltage is generated in response to the input current and an input voltage, and the current limiter is configured to limit the input current in response to a quantity that is related to a ratio of the output voltage divided by the input voltage. For example, an embodiment of such a power-supply controller may be able to limit the output or load current from a power supply to a set level by limiting the input current in response to a quantity that is related to the ratio (e.g., the boost ratio) of the output voltage to the input voltage.
    Type: Application
    Filed: March 14, 2013
    Publication date: May 8, 2014
    Applicant: INTERSIL AMERICAS LLC
    Inventors: Marc Ethan DAGAN, Ruchi PARIKH