Patents by Inventor Ruchi Sarda Tandon

Ruchi Sarda Tandon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230408760
    Abstract: The optical fiber disclosed has a glass fiber including a core and a cladding. The core comprises silica glass doped with chlorine and having an outer radius r1 between 3.0 microns and 10.0 microns. The cladding has an outer radius r4 not less than 50.0 microns. A primary coating surrounding the cladding has a thickness (r5?r4) between 5.0 microns and 20.0 microns, and an in situ modulus less than 0.30 MPa. A secondary coating surrounding the primary coating has a thickness (r6?r5) between 8.0 microns and 30.0 microns, a Young's modulus greater than 1500 MPa, and a normalized puncture load greater than 3.6×10?3 g/micron 2. The optical fiber has a 22-meter cable cutoff wavelength less than 1530 nm, an attenuation at 1550 nm of less than 0.17 dB/km, and a bending loss at 1550 nm of less than 3.0 dB/turn.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon, Ruchi Sarda Tandon
  • Patent number: 11733453
    Abstract: The optical fibers disclosed is a single mode optical fiber comprising a core region and a cladding region surrounding and directly adjacent to the core region. The core region can have a radius r1 in a range from 3 ?m to 7 ?m and a relative refractive index profile ?1 having a maximum relative refractive index ?1max in the range from 0.25% to 0.50%. The cladding region can include a first outer cladding region and a second outer cladding region surrounding and directly adjacent to the first outer cladding region. The first outer cladding region can have a radius r4a. The second outer cladding region can have a radius r4b less than or equal to 45 ?m and comprising silica based glass doped with titania.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: August 22, 2023
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Sarda Tandon, Bin Yang
  • Patent number: 11675122
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low attenuation. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide low-diameter fibers without sacrificing protection. The primary coating has high tear strength and is resistant to damage caused by mechanical force. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 190 ?m.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: June 13, 2023
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon, Ruchi Sarda Tandon
  • Patent number: 11579359
    Abstract: A disclosed multimode optical fiber comprises a core and a cladding surrounding the core. The core has an outer radius r1 in between 20 ?m and 30 ?m. The cladding includes a first outer cladding region having an outer radius r4a and a second outer cladding region having an outer radius r4b less than or equal to 45 ?m. The second outer cladding region comprises silica-based glass doped with titania. The optical fiber further includes a primary coating with an outer radius r5 less than or equal to 80 ?m, and a thickness (r5?r4) less than or equal to 30 ?m. The optical fiber further includes a secondary coating with an outer radius r6 less than or equal to 100 ?m. The secondary coating has a thickness (r6?r5) less than or equal to 30 ?m, and a normalized puncture load greater than 3.6×10?3 g/micron2.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: February 14, 2023
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Sarda Tandon, Bin Yang
  • Publication number: 20210356659
    Abstract: The optical fibers disclosed is a single mode optical fiber comprising a core region and a cladding region surrounding and directly adjacent to the core region. The core region can have a radius r1 in a range from 3 ?m to 7 ?m and a relative refractive index profile ?1 having a maximum relative refractive index ?1max in the range from 0.25% to 0.50%. The cladding region can include a first outer cladding region and a second outer cladding region surrounding and directly adjacent to the first outer cladding region. The first outer cladding region can have a radius r4a. The second outer cladding region can have a radius rob less than or equal to 45 ?m and comprising silica based glass doped with titania.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 18, 2021
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Sarda Tandon, Bin Yang
  • Publication number: 20210356661
    Abstract: A disclosed multimode optical fiber comprises a core and a cladding surrounding the core. The core has an outer radius r1 in between 20 ?m and 30 ?m. The cladding includes a first outer cladding region having an outer radius r4a and a second outer cladding region having an outer radius r4b less than or equal to 45 ?m. The second outer cladding region comprises silica-based glass doped with titania. The optical fiber further includes a primary coating with an outer radius r5 less than or equal to 80 ?m, and a thickness (r5?r4) less than or equal to 30 ?m. The optical fiber further includes a secondary coating with an outer radius r6 less than or equal to 100 ?m. The secondary coating has a thickness (r6?r5) less than or equal to 30 ?m, and a normalized puncture load greater than 3.6×10?3 g/micron2.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 18, 2021
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Sarda Tandon, Bin Yang
  • Publication number: 20210278602
    Abstract: A fiber optic connector that includes a connector body comprising a ferrule retaining portion, a pusher engagement portion and a body cable passage extending through the pusher engagement portion and the ferrule retaining portion. The connector includes a ferrule assembly structurally configured to be retained by the ferrule retaining portion with an optical fiber bore of the ferrule assembly in alignment with the body cable passage. The connector includes a pusher structurally configured to axially engage the pusher engagement portion with a pusher cable passage in alignment with the body cable passage, and a seal component with superabsorbent properties.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Dana Craig Bookbinder, Michael De Jong, Konrad Jan Koziel, Claudio Mazzali, Pushkar Tandon, Ruchi Sarda Tandon
  • Publication number: 20210263215
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low attenuation. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide low-diameter fibers without sacrificing protection. The primary coating has high tear strength and is resistant to damage caused by mechanical force. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 190 ?m.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon, Ruchi Sarda Tandon
  • Publication number: 20210223469
    Abstract: The optical fiber disclosed has a glass fiber including a core and a cladding. The core comprises silica glass doped with chlorine and having an outer radius r1 between 3.0 microns and 10.0 microns. The cladding has an outer radius r4 not less than 50.0 microns. A primary coating surrounding the cladding has a thickness (r5?r4) between 5.0 microns and 20.0 microns, and an in situ modulus less than 0.30 MPa. A secondary coating surrounding the primary coating has a thickness (r6?r5) between 8.0 microns and 30.0 microns, a Young's modulus greater than 1500 MPa, and a normalized puncture load greater than 3.6×10?3 g/micron2. The optical fiber has a 22-meter cable cutoff wavelength less than 1530 nm, an attenuation at 1550 nm of less than 0.17 dB/km, and a bending loss at 1550 nm of less than 3.0 dB/turn.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 22, 2021
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon, Ruchi Sarda Tandon