Patents by Inventor Ruchir Sehra

Ruchir Sehra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10098560
    Abstract: A system and method are provided to define a driver of a source associated with a cardiac rhythm disorder of a human heart. A plurality of cardiac signals associated with sensors arranged spatially in relation to an area of the heart are processed to determine a sequence of arcs of rotation in relation to the sensors over a time interval. Rotational directions of the arcs of rotation in the sequence are determined. The area of the heart is identified as controlling the source when the rotational directions of the arcs of rotation in the sequence continue in a same rotational direction in excess of a threshold.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 16, 2018
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 10092235
    Abstract: Disclosed is a method for interacting with the nervous system. The method includes detecting signals associated with a biological function at one or more sensors. It also includes processing the signals to create a representation thereof, delivering effector responses based on the representations, and controlling a physical process.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 9, 2018
    Assignee: Incyphae Inc.
    Inventors: Sanjiv M. Narayan, Ruchir Sehra
  • Patent number: 10085655
    Abstract: A system and method are provided for identifying a driver of a source associated with a heart rhythm disorder. Data are accessed from a plurality of sensors representing biological activity in the heart. A local first region of the heart that has repeating activation and determine whether the first region controls a second distant region of the heart for at least a predetermined number of beats is identified. The first local region is assigned as a driver of a source of the heart rhythm disorder, the source including the first local region and the second distant region.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 2, 2018
    Assignees: The Regents of the University of California, The United States of America as Represented by the Department of Veterans Affairs, Topera, Inc.
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 10070795
    Abstract: An example system and method of defining a rotational source associated with a heart rhythm disorder are disclosed. A plurality of center locations of wave fronts are calculated at a plurality of time points associated with the heart rhythm disorder. A rotational path that connects the plurality of center locations is then determined. Thereafter, a clinical representation that identifies a region of heart tissue associated with the rotational path is generated. The system and method can also determine a likely core associated with the rotational path. A plurality of relative diffusion shapes associated with the plurality of the center locations is calculated. A plurality of intersecting points of a smallest relative diffusion shape and other relative diffusion shapes is determined within the rotational path. A bounded polygon of the intersecting points is defined as the likely core.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: September 11, 2018
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Ruchir Sehra
  • Patent number: 9913615
    Abstract: In a system and method for reconstructing cardiac activation information, an analysis cardiac signal and a reference cardiac signal are accessed and processed to determine a first point of change in the analysis cardiac signal at which a derivative of the analysis cardiac signal diverges with respect to a derivative of the reference cardiac signal. The signals are processed to determine a second point of change in the analysis cardiac signal at which a different derivative of the analysis cardiac signal with respect to a different derivative of the reference cardiac signal. An activation onset time is assigned in the analysis cardiac signal at a point based on a mathematical association among the first point of change and the second point of change to define cardiac activation indicating a beat in the analysis cardiac signal.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: March 13, 2018
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv M. Narayan, Carey Robert Briggs, Ruchir Sehra
  • Publication number: 20170332971
    Abstract: A system to generate a representation of a rhythm disorder that includes identifying remote or polar sources associated with a cardiac rhythm disorder is disclosed. The system includes generated a representation based on the cardiac information signals received from the sensors by transformation of spline-sensor locations of the catheter to x-y coordinate pairs of locations. A first offset is determined resulting from a perturbation to corresponding x-y coordinate pairs of locations associated with the representation, the first offset displacing coordinate pairs of sensor locations of the representation at least one unit of displacement in a first direction. A remote source associated with a cardiac rhythm disorder is identified when activations associated with the cardiac information signals rotate in sequence at least once, or emanate centrifugally for at least a first time period, the source being identified based on the representation as displaced.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 23, 2017
    Inventors: William Robert Macneil, Ruchir Sehra
  • Publication number: 20170311835
    Abstract: A system for processing cardiac activation information associated with a complex rhythm disorder identifies a location of the heart rhythm disorder by determining activations within cardiac signals obtained at neighboring locations of the heart and arranging the activations to identify an activation trail. The activation trail may define a rotational pattern or radially emanating pattern corresponding to an approximate core of the heart rhythm disorder.
    Type: Application
    Filed: July 13, 2017
    Publication date: November 2, 2017
    Inventors: Sanjiv M. Narayan, Ruchir Sehra
  • Publication number: 20170232263
    Abstract: An example system and method associated with identifying and treating a source of a heart rhythm disorder are disclosed. In accordance therewith, a spatial element associated with a region of the heart is selected. Progressive rotational activations or progressive focal activations are determined in relation to the selected spatial element over a period of time. The selecting and determining are repeated over multiple periods of time. A source parameter of rotation activations or focal activations is determined, wherein the source parameter indicates consistency of successive rotational activations or focal activations in relation to a portion of the region of the heart. The determining of a source parameter is repeated for multiple regions of the heart. Thereafter, representation of the source parameter is displayed for each of the multiple regions of the heart to identify a shape representing the source of the heart rhythm disorder.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Sanjiv M. Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 9717436
    Abstract: System, assembly and method are provided to facilitate reconstruction of cardiac information representing a complex rhythm disorder associated with a patient's heart to indicate a source of the heart rhythm disorder. The complex rhythm disorder can be treated by application of energy to modify the source of the rhythm disorder.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 1, 2017
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv Narayan, Ruchir Sehra
  • Publication number: 20170196503
    Abstract: Disclosed is a method for interacting with the nervous system. The method includes detecting signals associated with a biological function at one or more sensors. It also includes processing the signals to create a representation thereof, delivering effector responses based on the representations, and controlling a physical process.
    Type: Application
    Filed: February 27, 2017
    Publication date: July 13, 2017
    Inventors: Sanjiv M. Narayan, Ruchir Sehra
  • Publication number: 20170164893
    Abstract: The present invention relates generally and specifically to combining biological sensors with external machines using machine learning to form computerized representations that can control effectors to deliver therapy or enhance performance.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Inventors: Sanjiv M. Narayan, Ruchir Sehra
  • Patent number: 9668666
    Abstract: In a system and method for reconstructing cardiac activation information, an analysis cardiac signal and a reference cardiac signal are accessed and processed to determine a first point of change in the analysis cardiac signal at which a derivative of the analysis cardiac signal diverges with respect to a derivative of the reference cardiac signal. The signals are processed to determine a second point of change in the analysis cardiac signal at which a different derivative of the analysis cardiac signal with respect to a different derivative of the reference cardiac signal. An activation onset time is assigned in the analysis cardiac signal at a point based on a mathematical association of the first point of change and the second point of change to define cardiac activation indicating a beat in the analysis cardiac signal.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 6, 2017
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Publication number: 20170049402
    Abstract: In a system and method for reconstructing cardiac activation information, an analysis cardiac signal and a reference cardiac signal are accessed and processed to determine a first point of change in the analysis cardiac signal at which a derivative of the analysis cardiac signal diverges with respect to a derivative of the reference cardiac signal. The signals are processed to determine a second point of change in the analysis cardiac signal at which a different derivative of the analysis cardiac signal with respect to a different derivative of the reference cardiac signal. An activation onset time is assigned in the analysis cardiac signal at a point based on a mathematical association among the first point of change and the second point of change to define cardiac activation indicating a beat in the analysis cardiac signal.
    Type: Application
    Filed: November 4, 2016
    Publication date: February 23, 2017
    Inventors: Sanjiv M. Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 9560982
    Abstract: A method for sensing multiple local electric voltages from endocardial surface of a heart, includes: providing a system for sensing multiple local electric voltages from endocardial surface of a heart, including: a first elongate tubular member having a lumen, a proximal end and a distal end; a basket assembly including: a plurality of flexible splines for guiding a plurality of exposed electrodes, the splines having proximal portions, distal portions and medial portions therein between, wherein the electrodes are substantially flat electrodes and are substantially unidirectionally oriented towards a direction outside of the basket.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: February 7, 2017
    Assignee: Topera, Inc.
    Inventors: Thomas F. Kordis, Ruchir Sehra
  • Patent number: 9549684
    Abstract: Reconstruction of cardiac information representing a complex rhythm disorder is facilitated by assigning activation onsets to non-discernible beats in low confidence signals based upon time associations relative to activation onsets in adjacent high confidence signals.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: January 24, 2017
    Assignees: The Regents of the University of California, The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv Narayan, Ruchir Sehra
  • Publication number: 20160324430
    Abstract: An example system and method of defining a rotational source associated with a heart rhythm disorder are disclosed. A plurality of center locations of wave fronts are calculated at a plurality of time points associated with the heart rhythm disorder. A rotational path that connects the plurality of center locations is then determined. Thereafter, a clinical representation that identifies a region of heart tissue associated with the rotational path is generated. The system and method can also determine a likely core associated with the rotational path. A plurality of relative diffusion shapes associated with the plurality of the center locations is calculated. A plurality of intersecting points of a smallest relative diffusion shape and other relative diffusion shapes is determined within the rotational path. A bounded polygon of the intersecting points is defined as the likely core.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: William Robert Macneil, Ruchir Sehra
  • Publication number: 20160278654
    Abstract: In a system and method for reconstructing cardiac activation information, an analysis cardiac signal and a reference cardiac signal are accessed and processed to determine a first point of change in the analysis cardiac signal at which a derivative of the analysis cardiac signal diverges with respect to a derivative of the reference cardiac signal. The signals are processed to determine a second point of change in the analysis cardiac signal at which a different derivative of the analysis cardiac signal with respect to a different derivative of the reference cardiac signal. An activation onset time is assigned in the analysis cardiac signal at a point based on a mathematical association of the first point of change and the second point of change to define cardiac activation indicating a beat in the analysis cardiac signal.
    Type: Application
    Filed: November 17, 2015
    Publication date: September 29, 2016
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Publication number: 20160235311
    Abstract: In a system and method for identifying a driver of a source associated with a heart rhythm disorder, data are accessed from a plurality of sensors representing biological activity in the heart. A first region and a second region of the heart, which comprise the source of the heart rhythm disorder, are identified. If the first region of the heart has repeating centrifugal activation and controls the second region of the heart for at least a predetermined number of beats, the first region is identified as controlling the source of the heart rhythm disorder.
    Type: Application
    Filed: April 22, 2016
    Publication date: August 18, 2016
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 9398860
    Abstract: An example system and method of determining a likely core of a rotational source associated with a heart rhythm disorder are disclosed. A plurality of relative diffusion shapes associated with wave fronts is calculated at a plurality of time points associated with the rotational source. The wave fronts associated with heart signals. A plurality of intersecting points of a smallest relative diffusion shape and other relative diffusion shapes is determined. A bounded polygon of the intersecting points is defined as the likely core.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: July 26, 2016
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Ruchir Sehra
  • Patent number: 9332915
    Abstract: In a system and method for identifying a driver of a source associated with a heart rhythm disorder, data are accessed from a plurality of sensors representing biological activity in the heart. A first region and a second region of the heart are identified as the source of the heart rhythm disorder. If the first region has repeating activation and controls the second region for at least a predetermined number of beats, the first region is identified as controlling the source of the heart rhythm disorder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 10, 2016
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs, Office of the General Counsel
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra