Patents by Inventor Rudolf Eckenstein
Rudolf Eckenstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8016081Abstract: An elevator drive with a brake device has compression springs that act on brake levers, whereby brake linings generate a brake force on a brake drum. The more the brake linings wear due to abrasion, the smaller the distance of the plunger from the brake magnet housing becomes. Should the plunger come into contact with the brake magnet housing, the braking capacity of the brake linings is completely eliminated creating an operating condition that is dangerous for elevator users. A switch is provided that detects a minimum distance. The switch can be arranged on the plunger of the brake magnet and detect the minimum distance to the brake magnet housing or, in the case of a retrofit, the switch can be arranged on the brake magnet rod and, for example, detect the distance of the second joint from the brake magnet housing, and at the minimum distance the switch switches.Type: GrantFiled: June 16, 2008Date of Patent: September 13, 2011Assignee: Inventio AGInventors: Karl Weinberger, Rudolf Eckenstein, Reneā² Hermann, Luc Bonnard
-
Patent number: 8011481Abstract: A method for monitoring the operating state of an elevator drive having a brake includes the mounting of a sensor on a movable brake part. The sensor generates an output proportional to the extent of relative movement between the brake part upon which it is mounted and a fixed brake part. The sensor output is monitored to provide an indication of the operating state of the drive and may be combined with other data to provide indications of a variety of drive states.Type: GrantFiled: September 28, 2010Date of Patent: September 6, 2011Assignee: Inventio AGInventors: Karl Erny, Urs Lindegger, Rudolf Eckenstein
-
Patent number: 7909145Abstract: An elevator drive has a brake device with compression springs to actuate brake levers, and brake linings on a brake drum creating a braking force. A sensor is provided to detect the movement of a brake magnet armature tappet. A bracket is attached to the brake magnet tappet on one end and a distance piece carrying the sensor housing is arranged on the other end. A restoring lug is attached to the existing mechanical indicator. A monitor evaluates the sensor signal and turns off the elevator drive in the event of dangerous operational states via a safety circuit. The system allows the state of the brake device to be monitored. The more the brake linings wear off due to abrasion, the smaller the distance between the armature and the brake magnet housing. If the armature is in contact with the brake magnet housing, the braking ability of the brake linings is completely void.Type: GrantFiled: November 24, 2009Date of Patent: March 22, 2011Assignee: Inventio AGInventors: Karl Erny, Urs Lindegger, Rudolf Eckenstein
-
Publication number: 20110011682Abstract: An elevator drive has a brake device with compression springs to actuate brake levers, and brake linings on a brake drum creating a braking force. A sensor is provided to detect the movement of a brake magnet armature tappet. A bracket is attached to the brake magnet tappet on one end and a distance piece carrying the sensor housing is arranged on the other end. A restoring lug is attached to the existing mechanical indicator. A monitor evaluates the sensor signal and turns off the elevator drive in the event of dangerous operational states via a safety circuit. The system allows the state of the brake device to be monitored. The more the brake linings wear off due to abrasion, the smaller the distance between the armature and the brake magnet housing. If the armature is in contact with the brake magnet housing, the braking ability of the brake linings is completely void.Type: ApplicationFiled: September 28, 2010Publication date: January 20, 2011Inventors: Karl ERNY, Urs Lindegger, Rudolf Eckenstein
-
Patent number: 7775329Abstract: A method and detection system monitors the speed of an elevator car and, in case of excess speed caused by brake failure of a motor brake or shaft fracture of a drive pulley shaft, a safety circuit is opened and the detection system is transferred from a normal operational state (State 1) to a retardation state (State 2) in which it is monitored whether the elevator car is retarded after defined speed presets. After a successful retardation, the detection system is transferred to a state of standstill monitoring (State 3) in which it is monitored whether the elevator car leaves its standstill position. If the presets of State 2 or State 3 are not fulfilled, the detection system is transferred to a braking state of the brake (State 4) in which a brake which fixes the elevator car is activated.Type: GrantFiled: April 14, 2006Date of Patent: August 17, 2010Assignee: Inventio AGInventors: Rudolf Eckenstein, Carlos Latorre Marcuz, Eric Birrer, Karsten Gensicke
-
Publication number: 20100065379Abstract: An elevator drive has a brake device with compression springs to actuate brake levers, and brake linings on a brake drum creating a braking force. A sensor is provided to detect the movement of a brake magnet armature tappet. A bracket is attached to the brake magnet tappet on one end and a distance piece carrying the sensor housing is arranged on the other end. A restoring lug is attached to the existing mechanical indicator. A monitor evaluates the sensor signal and turns off the elevator drive in the event of dangerous operational states via a safety circuit. The system allows the state of the brake device to be monitored. The more the brake linings wear off due to abrasion, the smaller the distance between the armature and the brake magnet housing. If the armature is in contact with the brake magnet housing, the braking ability of the brake linings is completely void.Type: ApplicationFiled: November 24, 2009Publication date: March 18, 2010Inventors: Karl ERNY, Urs Lindegger, Rudolf Eckenstein
-
Patent number: 7543690Abstract: A cable brake has an electromagnet for selectively releasing a mass to fall down guide rods under the effect of gravity and impact a trigger lever to release a crossbar from a pawl, whereupon pressure springs move a brake plate against a cable strand to halt the cable strand. The pressure springs extend between a first pressure plate at the brake plate and a spaced second pressure plate that can be displaced along a path by a cooperating screw and nut to pre-stress the pressure springs. The pressure springs are relaxed in one end position of the path whereby the crossbar connected to the first pressure plate by a release bar is engaged by the pawl in a starting position.Type: GrantFiled: December 15, 2005Date of Patent: June 9, 2009Assignee: Inventio AGInventors: Rudolf Eckenstein, Carlos Latorre Marcuz
-
Publication number: 20080308360Abstract: An elevator drive with a brake device has compression springs that act on brake levers, whereby brake linings generate a brake force on a brake drum. The more the brake linings wear due to abrasion, the smaller the distance of the plunger from the brake magnet housing becomes. Should the plunger come into contact with the brake magnet housing, the braking capacity of the brake linings is completely eliminated creating an operating condition that is dangerous for elevator users. A switch is provided that detects a minimum distance. The switch can be arranged on the plunger of the brake magnet and detect the minimum distance to the brake magnet housing or, in the case of a retrofit, the switch can be arranged on the brake magnet rod and, for example, detect the distance of the second joint from the brake magnet housing, and at the minimum distance the switch switches.Type: ApplicationFiled: June 16, 2008Publication date: December 18, 2008Inventors: Karl Weinberger, Rudolf Eckenstein, Rene Hermann, Luc Bonnard
-
Patent number: 7287627Abstract: A cable brake has an electromagnet releasably retaining a mass that falls down guide rods under the effect of gravity and impacts a first arm of a trigger lever. Upon impact by the mass, the trigger lever rotates a second arm with a pawl to release a crossbar, whereupon pressure springs press a moveable brake plate against a cable strand to halt the cable strand. A return mechanism utilizes a screw and cooperating nut or a coupler to return the moveable brake plate and pre-stress the pressure springs.Type: GrantFiled: December 15, 2005Date of Patent: October 30, 2007Assignee: Inventio AGInventors: Rudolf Eckenstein, Carlos Latorre Marcuz
-
Publication number: 20060237265Abstract: A method and detection system monitors the speed of an elevator car and, in case of excess speed caused by brake failure of a motor brake or shaft fracture of a drive pulley shaft, a safety circuit is opened and the detection system is transferred from a normal operational state (State 1) to a retardation state (State 2) in which it is monitored whether the elevator car is retarded after defined speed presets. After a successful retardation, the detection system is transferred to a state of standstill monitoring (State 3) in which it is monitored whether the elevator car leaves its standstill position. If the presets of State 2 or State 3 are not fulfilled, the detection system is transferred to a braking state of the brake (State 4) in which a brake which fixes the elevator car is activated.Type: ApplicationFiled: April 14, 2006Publication date: October 26, 2006Inventors: Rudolf Eckenstein, Carlos Marcuz, Eric Birrer, Karsten Gensicke
-
Publication number: 20060118366Abstract: A cable brake has an electromagnet releasably retaining a mass that falls down guide rods under the effect of gravity and impacts a first arm of a trigger lever. Upon impact by the mass, the trigger lever rotates a second arm with a pawl to release a crossbar, whereupon pressure springs press a moveable brake plate against a cable strand to halt the cable strand. A return mechanism utilizes a screw and cooperating nut or a coupler to return the moveable brake plate and pre-stress the pressure springs.Type: ApplicationFiled: December 15, 2005Publication date: June 8, 2006Inventors: Rudolf Eckenstein, Carlos Marcuz
-
Publication number: 20060090969Abstract: A cable brake has an electromagnet for selectively releasing a mass to fall down guide rods under the effect of gravity and impact a trigger lever to release a crossbar from a pawl, whereupon pressure springs move a brake plate against a cable strand to halt the cable strand. The pressure springs extend between a first pressure plate at the brake plate and a spaced second pressure plate that can be displaced along a path by a cooperating screw and nut to pre-stress the pressure springs. The pressure springs are relaxed in one end position of the path whereby the crossbar connected to the first pressure plate by a release bar is engaged by the pawl in a starting position.Type: ApplicationFiled: December 15, 2005Publication date: May 4, 2006Inventors: Rudolf Eckenstein, Carlos Marcuz