Patents by Inventor Rudolf Murai von Buenau

Rudolf Murai von Buenau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230154450
    Abstract: A process labeled “voice grafting” can be understood in terms of the source-filter model of speech production as follows: For a patient who has partially or completely lost the ability to phonate, but retained at least a partial ability to articulate, the techniques described herein computationally “graft” the patient's time varying filter function, i.e. articulation, onto a source function, i.e. phonation, which is based on the speech output of one or more healthy speakers, in order to synthesize natural sounding speech in real time.
    Type: Application
    Filed: April 20, 2021
    Publication date: May 18, 2023
    Inventor: Rudolf MURAI VON BÜNAU
  • Publication number: 20210145278
    Abstract: The proposed combination device combines any tonometric metrology with a drug application to administer glaucoma medication on an eye. Several technical concepts are proposed and exemplary embodiments for rebound tonometry and air-puff tonometry are shown. However other methods such as optical coherence elastography (OCE) could also be used. The Solutions provide home care tonometry offerings which host the capability to administer glaucoma medication.
    Type: Application
    Filed: April 29, 2019
    Publication date: May 20, 2021
    Inventors: Rudolf Murai VON BÜNAU, Johannes KINDT, Martin HACKER, Tobias BÜHREN, Thomas K. FITZMORRIS, Daniel BUBLITZ, Steffen WAGNER, Wibke HELLMICH
  • Publication number: 20210137601
    Abstract: Methods and devices for visualising an implant in a retina are provided. A 2D image of the retina is taken and OCT scans of the retina and implant are carried out. Based thereon, the implant and retina are visualised.
    Type: Application
    Filed: May 6, 2019
    Publication date: May 13, 2021
    Applicant: Carl Zeiss AG
    Inventors: Johannes KINDT, Rudolf Murai VON BUENAU, Tobias SCHMITT-MANDERBACH
  • Publication number: 20210015665
    Abstract: A drainage aid which is introduced into tissue to permit or improve drainage of liquid by generating new drainage channels or by keeping existing drainage channels open, to permit effective drainage. In particular, a stent for glaucoma treatment is provided for the drainage of aqueous humor from the anterior chamber through the cornea, the limbus or the sclera directly onto the eye surface. The shunt implant includes at least one inner component and one outer component, which are connected to each other following introduction. The cross section of the shunt implant can be round, oval or angular. The invention can also be used wherever narrowed vessels or channels are intended to be expanded or held open.
    Type: Application
    Filed: March 6, 2019
    Publication date: January 21, 2021
    Applicant: Carl Zeiss Meditec AG
    Inventors: Martin HACKER, Rudolf Murai von Bünau, Christian DIETRICH
  • Patent number: 10194797
    Abstract: A method for selecting an intraocular lens (IOL) to be implanted into an eye, in which the selection is based on a non-paraxial approach. In a ray tracing method for selecting an intraocular lens to be implanted into an eye with a simplified, centered optical system, in addition to the preoperatively measured biometric values, the effective lens position of the corresponding eye and the optical transfer function of the IOLs are used, which are calculated for a standardized distance behind the equatorial plane of the IOL. The method may be used to select an intraocular lens to be implanted into an eye and is equally suitable for spherical, aspherical, toric and multifocal IOLs.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 5, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Rudolf Murai von Bünau, Tobias Bühren
  • Publication number: 20180031815
    Abstract: A projection objective configured to image an object field in an object plane into an image field in an image field plane includes a reflective unit, a first refractive unit, and a second refractive unit. An optical axis of the first refractive unit is parallel to but displaced from an optical axis of the second refractive unit. The reflective unit includes a first curved mirror and a second curved mirror. The second curved mirror is immediately downstream from the first curved mirror in a path of light from the object plane to the image plane. The projection objective is a microlithography projection objective.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 1, 2018
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 9814382
    Abstract: A method for calculating the power of an intraocular lens including measuring an axial separation between the front surface of the cornea and the plane of the iris root; and determining the power of the intraocular lens using the measured axial separation together with other measured parameters and empirically determined lens constants.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: November 14, 2017
    Assignee: Carl Zeiss Meditec AG
    Inventors: Rudolf Murai Von Bünau, Burkhard Wagner, Scott A. Meyer, Xunchang Chen
  • Patent number: 9772478
    Abstract: A projection objective configured to image an object field in an object plane into an image field in an image field plane includes a reflective unit, a first refractive unit, and a second refractive unit. An optical axis of the first refractive unit is parallel to but displaced from an optical axis of the second refractive unit. The reflective unit includes a first curved mirror and a second curved mirror. The second curved mirror is immediately downstream from the first curved mirror in a path of light from the object plane to the image plane. The projection objective is a microlithography projection objective.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: September 26, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai von Buenau, Hans-Juergen Mann, Alexander Epple
  • Publication number: 20170007114
    Abstract: A method for calculating the power of an intraocular lens including measuring an axial separation between the front surface of the cornea and the plane of the iris root; and determining the power of the intraocular lens using the measured axial separation together with other measured parameters and empirically determined lens constants.
    Type: Application
    Filed: September 20, 2016
    Publication date: January 12, 2017
    Inventors: Rudolf Murai VON BÜNAU, Burkhard WAGNER, Scott A. MEYER, Xunchang CHEN
  • Publication number: 20160345825
    Abstract: A method for selecting an intraocular lens (IOL) to be implanted into an eye, in which the selection is based on a non-paraxial approach. In a ray tracing method for selecting an intraocular lens to be implanted into an eye with a simplified, centered optical system, in addition to the preoperatively measured biometric values, the effective lens position of the corresponding eye and the optical transfer function of the IOLs are used, which are calculated for a standardized distance behind the equatorial plane of the IOL. The method may be used to select an intraocular lens to be implanted into an eye and is equally suitable for spherical, aspherical, toric and multifocal IOLs.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 1, 2016
    Inventors: Rudolf Murai von Bünau, Tobias Bühren
  • Patent number: 9462938
    Abstract: For the pre-operative calculation of the power of an intraocular lens, three input parameters are needed: the axial length of the eye (AL), the refractive power of the cornea, and the distance between the front of the cornea and the back focal plane of the intraocular lens, the so-called effective lens position (ELP). The invention shows a novel approach to the determination of the ELP.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: October 11, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Rudolf Murai Von Bünau, Burkhard Wagner, Scott A. Meyer, Xunchang Chen
  • Publication number: 20160274343
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: November 23, 2015
    Publication date: September 22, 2016
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20160007846
    Abstract: For the pre-operative calculation of the power of an intraocular lens, three input parameters are needed: the axial length of the eye (AL), the refractive power of the cornea, and the distance between the front of the cornea and the back focal plane of the intraocular lens, the so-called effective lens position (ELP).
    Type: Application
    Filed: August 25, 2015
    Publication date: January 14, 2016
    Inventors: Rudolf Murai VON BÜNAU, Burkhard WAGNER, Scott A. MEYER, Xunchang CHEN
  • Patent number: 9144375
    Abstract: For the pre-operative calculation of the power of an intraocular lens, three input parameters are needed: the axial length of the eye (AL), the refractive power of the cornea, and the distance between the front of the cornea and the back focal plane of the intraocular lens, the so-called effective lens position (ELP). The invention shows a novel approach to the determination of the ELP.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 29, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Rudolf Murai Von Bünau, Burkhart Wagner, Scott A. Meyer, Xunchang Chen
  • Publication number: 20150226948
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective includes: a first objective part to image the pattern provided in the object plane to a first intermediate image, wherein all of the elements in the first objective part having optical power to image the pattern provided in the object plane to the first intermediate image are refractive elements; a second objective part that comprises at least one concave mirror to image the first intermediate image to a second intermediate image; and a third objective part to image the second intermediate image to the image plane, wherein all of the elements in the third objective part having optical power to image the second intermediate image to the image plane are refractive elements. An aperture stop is positioned in the third objective part and there are no more than four lenses in the third objective part between the aperture stop and the image plane.
    Type: Application
    Filed: April 2, 2015
    Publication date: August 13, 2015
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai von Buenau, Hans-Juergen Mann, Alexander Epple
  • Publication number: 20150055214
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140376086
    Abstract: A projection objective for imaging a pattern provided in an object plane onto an image plane includes: a first objective part to image the pattern provided in the object plane to a first intermediate image, wherein all of the elements in the first objective part having optical power to image the pattern are refractive elements; a second objective part that includes at least one concave mirror to image the first intermediate image to a second intermediate image; and a third objective part to image the second intermediate image to the image plane, wherein all of the elements in the third objective part having optical power are refractive elements. An aperture stop is positioned in the third objective part and there are no more than four lenses in the third objective part between the aperture stop and the image plane. The projection objective has an image side numerical aperture >0.9.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 25, 2014
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8801184
    Abstract: A system for the improved imaging of eye structures based on optical coherence tomography. The system includes an interferometric measuring arrangement, which has an optical element arranged in the measurement arm or reference arm for influencing the polarization state of the light before the light is interferometrically superimposed, a scanning unit arranged in the measurement arm for implementing OCT scans, a detector for recording the produced interference pattern, and an evaluating and documenting unit. At least two different polarization states of the light are produced. The interference patterns produced in the interferometric measuring arrangement are recorded and forwarded to the evaluating and documenting unit which reconstructs OCT scans from the transmitted interference patterns, combines the OCT scans, and presents and/or stores the resulting OCT signals. The system can be used for pachymetry in addition to the pre- and post-operative imaging for analysis and measurement.
    Type: Grant
    Filed: April 23, 2011
    Date of Patent: August 12, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Rudolf Murai von Bünau, Burkhard Wagner
  • Patent number: 8534838
    Abstract: A device for performing distance measurements on an eye. The device includes an interferometer, focuses at least one measurement beam records backscattered radiation and interferometrically generates a measurement signal displaying structures of the eye by time-domain, spectral-domain or Fourier-domain coherence reflectometry, has an adjustment apparatus for laterally and/or axially displacing the focus in the eye or for varying a polarization state of the measurement beam and has a control apparatus which actuates the interferometer, wherein the control apparatus generates a plurality of A-scan individual signals from the backscattered radiation, combines these to an A-scan measurement signal and actuates the adjustment apparatus for displacing the position of the focus or for varying the polarization while recording the backscattered radiation from which the control apparatus generates the A-scan individual signals is being recorded.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: September 17, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Roland Barth, Roland Bergner, Wilfried Bissmann, Rudolf Murai von Buenau, Martin Hacker, Ingo Koschmieder, Adolf Friedrich Fercher, Branislav Grajciar, Ralf Ebersbach
  • Publication number: 20130107209
    Abstract: A system for the improved imaging of eye structures based on optical coherence tomography. The system includes an interferometric measuring arrangement, which has an optical element arranged in the measurement arm or reference arm for influencing the polarization state of the light before the light is interferometrically superimposed, a scanning unit arranged in the measurement arm for implementing OCT scans, a detector for recording the produced interference pattern, and an evaluating and documenting unit. At least two different polarization states of the light are produced. The interference patterns produced in the interferometric measuring arrangement are recorded and forwarded to the evaluating and documenting unit which reconstructs OCT scans from the transmitted interference patterns, combines the OCT scans, and presents and/or stores the resulting OCT signals. The system can be used for pachymetry in addition to the pre- and post-operative imaging for analysis and measurement.
    Type: Application
    Filed: April 23, 2011
    Publication date: May 2, 2013
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Martin Hacker, Rudolf Murai von Bünau, Burkhard Wagner