Patents by Inventor Rudolph G. Buchheit

Rudolph G. Buchheit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110305970
    Abstract: A chemically linked catalyst-binder hydrogel material comprised of a water-insoluble chemical hydrogel is useful in, for example, fuel cells, batteries, electrochemical supercapacitors, semi-fuel cells etc. The water-insoluble chemical hydrogel is prepared by a chemical cross-linking reaction between a polymer (such as PVA or chitosan or gelatin) and an aqueous cross-linking agent such as glutaraldehyde, which is catalyzed by protic acid under ambient conditions of temperature and pressure.
    Type: Application
    Filed: November 11, 2010
    Publication date: December 15, 2011
    Inventors: Yogeshwar Sahai, Nurul A. Choudhury, Rudolph G. Buchheit
  • Patent number: 7135075
    Abstract: An aqueous solution for depositing an inorganic corrosion resistant coating on a metal substrate is disclosed. The aqueous solution comprises a film-forming agent, a supplemental anion, and a substrate activator. The film-forming agent is a vanadate salt that forms the corrosion resistant coating. The supplemental anion accelerates the rate at which the corrosion resistant coating is formed. The substrate activator serves to remove any existing oxides from the metal substrate prior to the formation of the corrosion resistant coating. The present invention additionally covers objects so coated and methods of application.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: November 14, 2006
    Assignee: The Ohio State University
    Inventors: Rudolph G. Buchheit, Hong Guan, Valerie N. Laget
  • Publication number: 20040216637
    Abstract: An aqueous solution for depositing an inorganic corrosion resistant coating on a metal substrate is disclosed. The aqueous solution comprises a film-forming agent, a supplemental anion, and a substrate activator. The film-forming agent is a vanadate salt that forms the corrosion resistant coating. The supplemental anion accelerates the rate at which the corrosion resistant coating is formed. The substrate activator serves to remove any existing oxides from the metal substrate prior to the formation of the corrosion resistant coating. The present invention additionally covers objects so coated and methods of application.
    Type: Application
    Filed: January 20, 2004
    Publication date: November 4, 2004
    Applicant: The Ohio State University
    Inventors: Rudolph G. Buchheit, Hong Guan, Valerie N. Laget
  • Patent number: 6086726
    Abstract: The present invention provides a surface modification method that provides beneficial changes in surface properties, can modify a surface to a greater depth than previous methods, and that is suitable for industrial application. The present method comprises applying a thin-film coating to a surface of a substrate, then subjecting the coated surface to an ion beam. The ion beam power pulse heats the coated surface, leading to alloying between the material in the coating and the material of the substrate. Rapid cooling of the alloyed layer after an ion beam pulse can lead to formation of metastable alloys and microstructures not accessible by conventional alloying methods or intense ion beam treatment of the substrate alone.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: July 11, 2000
    Assignee: Sandia Corporation
    Inventors: Timothy J. Renk, Neil R. Sorensen, Donna Cowell Senft, Rudolph G. Buchheit, Jr., Michael O. Thompson, Kenneth S. Grabowski
  • Patent number: 5756218
    Abstract: Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: May 26, 1998
    Assignee: Sandia Corporation
    Inventors: Rudolph G. Buchheit, Michael A. Martinez
  • Patent number: 5266356
    Abstract: Aluminum and aluminum alloys are protected from corrosion by immersion in an alkaline lithium or alkaline magnesium salt solution. Immersion in the salt solution causes the formation of a protective film on the surface of the aluminum or aluminum alloy which includes hydrotalcite compounds. A post film formation heat treatment significantly improves the corrosion resistance of the protective film.
    Type: Grant
    Filed: June 21, 1991
    Date of Patent: November 30, 1993
    Assignees: The Center for Innovative Technology, University of Virginia
    Inventors: Rudolph G. Buchheit, Jr., Glenn E. Stoner
  • Patent number: RE35576
    Abstract: Aluminum and aluminum alloys are protected from corrosion by immersion in an alkaline lithium or alkaline magnesium salt solution. Immersion in the salt solution causes the formation of a protective film on the surface of the aluminum or aluminum alloy which includes hydrotalcite compounds. A post film formation heat treatment significantly improves the corrosion resistance of the protective film.
    Type: Grant
    Filed: September 28, 1995
    Date of Patent: July 29, 1997
    Assignee: Center for Innovative Technology
    Inventors: Rudolph G. Buchheit, Jr., Glenn E. Stoner