Patents by Inventor Rudolph Hugo Petrmichl

Rudolph Hugo Petrmichl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6086796
    Abstract: A method is provided for manufacturing a diamond-like carbon (DLC) coated optical phase-change recording medium for use with near-field optical head devices and which exhibits superior wear resistance and improved lifetime. According to the method, the surface of a composite optical phase-change media structure deposited onto a substrate is subjected to ion beam deposition of a DLC over-coat to a thickness of no greater than about 450 .ANG.. Preferably the DLC is ion beam deposited onto the phase-change recording layer at the surface of the medium structure or onto a germanium-containing adhesion-promoting interlayer to achieve the desired adhesion of the DLC to the surface of the medium structure.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: July 11, 2000
    Assignee: Diamonex, Incorporated
    Inventors: David Ward Brown, Edward George Thear, Leonard Joseph Mahoney, Rudolph Hugo Petrmichl
  • Patent number: 6077569
    Abstract: An abrasion-resistant dielectric composite product is described comprising a substrate and an abrasion wear resistant coating material comprising carbon, hydrogen, silicon, and oxygen and a dielectric material. An improved method is provided for the deposition of highly durable and abrasion-resistant multilayer dielectric antireflective coatings and reflective colored mirror coatings onto plastic lenses such as ophthalmic lenses, safety lenses, sunglass lenses, and sports optics. An adhesion-enhancing polymer layer may be deposited onto the plastic substrate prior to deposition of the abrasion-resistant first coating layer. The multilayer dielectric coating structure consists of a transparent, highly abrasion-resistant first coating, and a second dielectric coating composed of at least one layer of dielectric material.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: June 20, 2000
    Assignee: Diamonex, Incorporated
    Inventors: Bradley J. Knapp, Fred M. Kimock, Rudolph Hugo Petrmichl, Norman Donald Galvin, Brian Kenneth Daniels
  • Patent number: 6046758
    Abstract: The invention provides a thermal print head with a protective coating of silicon-doped diamond-like carbon (Si-DLC) which imparts superior wear resistance, and improved lifetime. The Si-DLC is comprised of the elements C, H, Si and possibly O, N and Ar. The highly wear and abrasion-resistant Si-DLC diamond-like carbon coating is deposited by ion-assisted plasma deposition including direct ion beam deposition and capacitive radio frequency plasma deposition, from carbon-containing and silicon-containing precursor gases consisting of hydrocarbon, silane, organosilane, organosilazane and organo-oxysilicon compounds, or mixtures thereof. The resulting Si-DLC coating has the properties of Nanoindentation hardness in the range of approximately 10 to 35 GPa, thickness in the range of approximately 0.5 to 20 micrometers, dynamic friction coefficient of less than approximately 0.2, and a silicon concentration in the range of approximately 5 atomic % to approximately 40 atomic %.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: April 4, 2000
    Assignee: Diamonex, Incorporated
    Inventors: David Ward Brown, Melissa Baylog, Fred M. Kimock, Bradley J. Knapp, Rudolph Hugo Petrmichl, Edward George Thear
  • Patent number: 5973447
    Abstract: Plasma beam apparatus and method for the purpose of vacuum processing temperature sensitive materials at high discharge power and high processing rates. A gridless, closed or non-closed Hall-Current ion source is described which features a unique fluid-cooled anode with a shadowed gap through which ion source feed gases are introduced while depositing feed gases are injected into the plasma beam. The shadowed gap provides a well maintained, electrically active area at the anode surface which stays relatively free of non-conductive deposits. The anode discharge region is insulatively sealed to prevent discharges from migrating into the interior of the ion source. Thin vacuum gaps are also used between anode and non-anode components in order to preserve electrical isolation of the anode when depositing conductive coatings. The magnetic field of the Hall-Current ion source is produced by an electromagnet driven either by the discharge current or a periodically alternating current.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: October 26, 1999
    Assignee: Monsanto Company
    Inventors: Leonard Joseph Mahoney, Brian Kenneth Daniels, Rudolph Hugo Petrmichl, Florian Joseph Fodor, Ray Hays Venable, III
  • Patent number: 5888593
    Abstract: An ion beam deposition method is provided for manufacturing a coated substrate with improved wear-resistance, and improved lifetime. The substrate is first chemically cleaned to remove contaminants. Secondly, the substrate is inserted into a vacuum chamber onto a substrate holder, and the air therein is evacuated via pump. Then the substrate surface is bombarded with energetic ions from an ion beam source supplied from inert or reactive gas inlets to assist in removing residual hydrocarbons and surface oxides, and activating the surface. After sputter-etching the surface, a protective, wear-resistant coating is deposited by plasma ion beam deposition where a portion of the precursor gases are introduced into the ion beam downstream of the ion source, and hydrogen is introduced directly into the ion source plasma chamber. The plasma ion beam-deposited coating may contain one or more layers.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: March 30, 1999
    Assignee: Monsanto Company
    Inventors: Rudolph Hugo Petrmichl, Leonard Joseph Mahoney, Ray Hays Venable III, Norman Donald Galvin, Bradley J. Knapp, Fred Michael Kimock
  • Patent number: 5846649
    Abstract: An abrasion-resistant dielectric composite product is described comprising a substrate and an abrasion wear resistant coating material comprising carbon, hydrogen, silicon, and oxygen and a dielectric material. An improved method is provided for the deposition of highly durable and abrasion-resistant multilayer dielectric antireflective coatings and reflective colored mirror coatings onto plastic lenses such as ophthalmic lenses, safety lenses, sunglass lenses, and sports optics. An adhesion-enhancing polymer layer may be deposited onto the plastic substrate prior to deposition of the abrasion-resistant first coating layer. The multilayer dielectric coating structure consists of a transparent, highly abrasion-resistant first coating, and a second dielectric coating composed of at least one layer of dielectric material.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: December 8, 1998
    Assignee: Monsanto Company
    Inventors: Bradley J. Knapp, Fred M. Kimock, Rudolph Hugo Petrmichl, Brian Kenneth Daniels
  • Patent number: 5679413
    Abstract: An abrasion wear resistant coated substrate product is described comprising a substrate and an abrasion wear resistant coating material comprising carbon, hydrogen, silicon, and oxygen. The abrasion wear resistant coating material has the properties of Nanoindentation hardness in the range of about 2 to about 5 GPa and a strain to microcracking greater than about 1% and a transparency greater than 85% in the visible spectrum. The coated products of the present invention are suitable for use in optical applications such as ophthalmic lenses or laser bar code scanner windows. In the method for making the products, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions and/or reactive species to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: October 21, 1997
    Assignee: Monsanto Company
    Inventors: Rudolph Hugo Petrmichl, Bradley J. Knapp, Fred M. Kimock, Brian Kenneth Daniels
  • Patent number: 5653812
    Abstract: The invention is a method and apparatus for the RF plasma deposition of diamond-like carbon (DLC) and related hard coatings onto the surface of drills; especially microdrills such as printed circuit board drills and printed wire board drills, using a mounting means connected to a source of capacitively coupled RF power. A key feature of the apparatus is that the drills to be coated are the only negatively biased surfaces in the capacitively-coupled system.According to the method, the surface of the drills to be coated are first chemically de-greased to remove contaminants, and inserted into the electronically masked coating fixture of the present invention. The electronically masked fixture includes the powered electrode, the portion of the drills to be coated, an electrically insulated spacer, and an electrically grounded shield plate. Next, the loaded fixture is placed into a plasma deposition vacuum chamber, and the air in said chamber is evacuated.
    Type: Grant
    Filed: September 26, 1995
    Date of Patent: August 5, 1997
    Assignee: Monsanto Company
    Inventors: Rudolph Hugo Petrmichl, Ray Hays Venable, Rickey Leonard Salter, Victor M. Zeeman, Jr.