Patents by Inventor Rudy Emrick

Rudy Emrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090149146
    Abstract: A method of receiving an RF signal in a wireless communication device includes receiving (1002) a signal having a frequency greater than 10 gigahertz by at least two of a plurality of millimeter wave antennas (122, 124, 126, 128, 822, 824, 826, 828, 922, 924, 926, 928) positioned within the portable wireless communication device. A characteristic of the signal at each antenna (122, 124, 126, 128, 822, 824, 826, 828, 922, 924, 926, 928) is determined (1004) and at least one of the plurality of millimeter wave antennas (122, 124, 126, 128, 822, 824, 826, 828, 922, 924, 926, 928) is selected (1006) based on the characteristics. The signal from the selected millimeter wave antenna (122, 124, 126, 128, 822, 824, 826, 828, 922, 924, 926, 928) is forwarded (1008) to a device controller 104. A combination of signals from the plurality of antennas may be evaluated prior to selecting two or more of the antennas (122, 124, 126, 128, 822, 824, 826, 828, 922, 924, 926, 928).
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: MOTOROLA, INC.
    Inventors: Rudy Emrick, Bruce Bosco
  • Publication number: 20070001287
    Abstract: A packaging structure (10) is provided having a hermetic sealed cavity for microelectronic applications. The packaging structure (10) comprises first and second packaging layers (12, 28) forming a cavity. Two liquid crystal polymer (LCP) layers (16, 22) are formed between and hermetically seal the first and second packaging layers (12, 28). First and second conductive strips (18, 20) are formed between the LCP layers (16, 22) and extend into the cavity. An electronic device (24) is positioned within the cavity and is coupled to the first and second conductive strips (18, 20).
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventors: Bruce Bosco, Rudy Emrick, Steven Franson, John Holmes, Stephen Rockwell
  • Publication number: 20060267181
    Abstract: A device (10) is provided for matching the CTE between substrates (12, 14), e.g., a semiconductor substrate and packaging material. The first substrate (12) has a first coefficient of thermal expansion and the second substrate (14) has a second coefficient of thermal expansion. At least two layers (16) of liquid crystal polymer are formed between the first substrate (12) and the second substrate (14), each layer having a unique coefficient of thermal expansion progressively higher in magnitude from the first substrate (12) to the second substrate (14).
    Type: Application
    Filed: May 27, 2005
    Publication date: November 30, 2006
    Inventors: Rudy Emrick, Bruce Bosco, Stephen Rockwell
  • Publication number: 20060092076
    Abstract: An improved transceiver assembly for a vehicle for detecting potentially hazardous objects is disclosed. The transceiver assembly preferably comprises a patch array feed antenna having an array of a plurality of patches for generating a beam and for detecting the beam as reflected from the potential hazards. The antenna is formed in or on a housing which also contains a parabolic dish that moves to sweeps the beam of radiation towards the potential hazards outside of the vehicle. In a preferred embodiment, approximately 77 GHz radiation is generated from and detected by the antenna.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Inventors: Steven Franson, Rudy Emrick
  • Publication number: 20060092086
    Abstract: In one embodiment, an improved transceiver assembly for a vehicle capable of detecting potentially hazardous objects is disclosed. The transceiver assembly comprises a tapered slot feed antenna for generating a beam and for detecting the beam as reflected from the potential hazards. The antenna is formed in or on a housing which also contains a parabolic dish that oscillates to sweep the beam of radiation towards the potential hazards outside of the vehicle. In a preferred embodiment, approximately 77 GHz radiation is generated from and detected by the antenna. The antenna is preferably formed on a printed circuit board (PCB) (substrate), which can include additional circuitry necessary to operate the antenna, and which is preferably mounted at an acute angle with respect to the housing to direct the beam at the parabolic dish.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Inventors: Steven Franson, Bruce Bosco, Rudy Emrick, John Holmes
  • Publication number: 20050143037
    Abstract: An antenna system (205) includes an antenna structure (215), a receiver (220), and an antenna system controller (225). The antenna structure includes an arrangement of antennas (237), a signal combiner (240), and a switching matrix (235). The arrangement of antennas is designed to have a set of antenna element separations that are optimized to provide lowest correlation coefficients of intercepted radio signals for a corresponding set of electromagnetic environment types that vary from a very low density scattering environment to a maximum density scattering environment. The antennas (230), (231), (232), (233), (234) in the antenna arrangement each include at least one element that has a common polarization. There is at least one antenna that is a dual polarized antenna. The antenna system selects an antenna element pair that corresponds to the environment type which it is operating and thereby receives a best combined signal.
    Type: Application
    Filed: October 7, 2004
    Publication date: June 30, 2005
    Inventors: Glafkos Stratis, Rudy Emrick, Celestino Corral, Shahriar Emami, Salvador Sibecas