Patents by Inventor Ruediger Wolff

Ruediger Wolff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230143338
    Abstract: The present invention relates to a catalyst for the oxidation of NO, for the oxidation of ammonia and for the selective catalytic reduction of NOx, comprising a substrate, a first coating comprising one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron; and a second coating comprising a platinum group metal component supported on a non-zeolitic oxidic material, wherein the second coating further comprises a zeolitic material comprising one or more of copper and iron.
    Type: Application
    Filed: April 9, 2021
    Publication date: May 11, 2023
    Inventors: Kevin BEARD, Edgar Viktor HUENNEKES, Jan Martin BECKER, Ruediger WOLFF, Petra CORDES
  • Publication number: 20220288563
    Abstract: The present invention relates to an aqueous suspension comprising water, a source of one or more of a vanadium oxide and a tungsten oxide, and particles of an oxidic support; wherein the particles of the aqueous suspension exhibit a polymodal particle size distribution characterized by a particle size distribution curve comprising a first peak with a maximum M(I) in the range of from 0.5 to 15 micrometers and a second peak with a maximum M(II) in the range of from 1 to 40 micrometers, wherein (M(I)/?m):(M(II)/?m)<1:1.
    Type: Application
    Filed: May 5, 2020
    Publication date: September 15, 2022
    Inventors: Edgar Viktor HUENNEKES, Petra CORDES, Jan Martin BECKER, Ruediger WOLFF, Joseph A. PATCHETT, Nicholas MCGUIRE, Edith SCHNEIDER, Kevin BEARD
  • Publication number: 20210180500
    Abstract: An SCR catalyst for treating diesel exhaust gas has: a flow-through substrate with an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow through substrate extending therethrough; a first coating disposed on the internal wall surface of the substrate, the surface defining the interface between the internal walls and passages, the first coating extending over 40 to 100% of the substrate axial length, the first coating having an 8-membered ring pore zeolitic material with copper and/or iron; a second coating extending over 20 to 100% of the substrate axial length, the second coating having a first oxidic material with titania, wherein at least 75 wt. % of the second coating is titania, calculated as TiO2, and 0 to 0.01 wt. % of the second coating is vanadium oxides, calculated as V2O5.
    Type: Application
    Filed: July 24, 2019
    Publication date: June 17, 2021
    Applicant: BASF Corporation
    Inventors: Edgar Viktor HUENNEKES, Kevin David BEARD, Petra CORDES, Ruediger WOLFF, Jan Martin BECKER
  • Patent number: 8858904
    Abstract: Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 14, 2014
    Assignee: BASF Corporation
    Inventors: Alfred Helmut Punke, Gerd Grubert, Yuejin Li, Ruediger Wolff, Stanley Roth, Torsten Müller-Stach, Attilio Siani, Kenneth Voss, Torsten Neubauer
  • Patent number: 8524182
    Abstract: Disclosed is a catalyzed soot filter with layered design wherein the first coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the second coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the second coating is lower than the Pt concentration in the first coating, and wherein the weight ratio of Pt:Pd in the second coating is in the range of from 1:1 to 0:1; and wherein the first coating and the second coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.25 to 3, calculated as ratio of the loading of the first coating (in g/inch3 (g/(2.54 cm)3)): loading of the second coating (in g/inch3 (g/(2.54 cm)3)).
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 3, 2013
    Assignees: BASF SE, BASF Corporation
    Inventors: Gerd Grubert, Alfred Punke, Torsten Neubauer, Ruediger Wolff, Stanley Roth, Yuejin Li, Torsten Müller-Stach, Marcus Hilgendorff
  • Publication number: 20120288427
    Abstract: Disclosed is a catalyzed soot filter with layered design wherein the first coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the second coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the second coating is lower than the Pt concentration in the first coating, and wherein the weight ratio of Pt:Pd in the second coating is in the range of from 1:1 to 0:1; and wherein the first coating and the second coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.25 to 3, calculated as ratio of the loading of the first coating (in g/inch3 (g/(2.54 cm)3)): loading of the second coating (in g/inch3 (g/(2.54 cm)3)).
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicants: BASF Corporation, BASF SE
    Inventors: Gerd Grubert, Alfred Punke, Torsten Neubauer, Ruediger Wolff, Stanley Roth, Yuejin Li, Torsten Müller-Stach, Marcus Hilgendorff
  • Publication number: 20110212008
    Abstract: Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
    Type: Application
    Filed: February 22, 2011
    Publication date: September 1, 2011
    Inventors: Alfred Helmut Punke, Gerd Grubert, Yuejin Li, Ruediger Wolff, Stanley Roth, Torsten Müeller-Stach, Attilio Siani, Kenneth Voss, Torsten Neubauer