Patents by Inventor Ruediger Zertani
Ruediger Zertani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240150196Abstract: The present invention relates to ?-nickel hydroxide doped with aluminum ions, in which the aluminum ions are homogeneously distributed in the crystal lattice of the ?-nickel hydroxide, as well as a method for their production. The present invention further relates to the use of the ?-nickel hydroxide according to the invention as a precursor material for the production of electrode material for lithium-ion batteries and nickel-metal hydride batteries and as a precursor material in the production of Raney nickel catalysts.Type: ApplicationFiled: January 15, 2024Publication date: May 9, 2024Inventors: Armin OLBRICH, Juliane MEESE-MARKTSCHEFFEL, Petra SCHOLZ, Mirja STERNBERG, Matthias JAHN, Rüdiger ZERTANI, Dirk PAULMANN, Henrik TRÜMPELMANN
-
Patent number: 11919783Abstract: The present invention relates to ?-nickel hydroxide doped with aluminum ions, in which the aluminum ions are homogeneously distributed in the crystal lattice of the ?-nickel hydroxide, as well as a method for their production. The present invention further relates to the use of the ?-nickel hydroxide according to the invention as a precursor material for the production of electrode material for lithium-ion batteries and nickel-metal hydride batteries and as a precursor material in the production of Raney nickel catalysts.Type: GrantFiled: June 13, 2018Date of Patent: March 5, 2024Assignee: UmicoreInventors: Armin Olbrich, Juliane Meese-Marktscheffel, Petra Scholz, Mirja Sternberg, Matthias Jahn, Rüdiger Zertani, Dirk Paulmann, Henrik Trümpelmann
-
Publication number: 20200198986Abstract: The present invention relates to ?-nickel hydroxide doped with aluminum ions, in which the aluminum ions are homogeneously distributed in the crystal lattice of the ?-nickel hydroxide, as well as a method for their production. The present invention further relates to the use of the ?-nickel hydroxide according to the invention as a precursor material for the production of electrode material for lithium-ion batteries and nickel-metal hydride batteries and as a precursor material in the production of Raney nickel catalysts.Type: ApplicationFiled: June 13, 2018Publication date: June 25, 2020Inventors: Armin OLBRICH, Juliane MEESE-MARKTSCHEFFEL, Petra SCHOLZ, Mirja STERNBERG, Matthias JAHN, Rüdiger ZERTANI, Dirk PAULMANN, Henrik TRÜMPELMANN
-
Powered compounds, method for the production thereof, and use thereof in lithium secondary batteries
Patent number: 9352977Abstract: The invention is directed to a process for preparing a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is Fe, Co, Zn, Cu or mixtures thereof, M2 is Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si or mixtures thereof, having the following steps: a) providing at least a first starting solution and a second starting solution, b) combining of at least the first starting solution and the second starting solution in a reactor and producing a homogeneously mixed reaction zone having a specific mechanical power input of at least 2 watt/liter and producing a product suspension containing insoluble product and a mother liquor which is supersaturated by setting of an excess of alkali and has a pH of 10-12, c) partial separating the mother liquor from the precipitated product to set solids contents of at least 150 g/l in the suspension.Type: GrantFiled: April 7, 2015Date of Patent: May 31, 2016Assignee: H.C. Starck GmbHInventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani -
POWERED COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF, AND USE THEREOF IN LITHIUM SECONDARY BATTERIES
Publication number: 20150210561Abstract: The invention is directed to a process for preparing a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is Fe, Co, Zn, Cu or mixtures thereof, M2 is Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si or mixtures thereof, having the following steps: a) providing at least a first starting solution and a second starting solution, b) combining of at least the first starting solution and the second starting solution in a reactor and producing a homogeneously mixed reaction zone having a specific mechanical power input of at least 2 watt/liter and producing a product suspension containing insoluble product and a mother liquor which is supersaturated by setting of an excess of alkali and has a pH of 10-12, c) partial separating the mother liquor from the precipitated product to set solids contents of at least 150 g/l in the suspension.Type: ApplicationFiled: April 7, 2015Publication date: July 30, 2015Inventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani -
Patent number: 9028710Abstract: The invention is directed to a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3?a?0.83, 0.1?b?0.5, 0.01?c?0.5, 0.01?x?0.99 and 1.01?y?1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·?m. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.Type: GrantFiled: July 23, 2008Date of Patent: May 12, 2015Assignee: H.C. Starck GmbHInventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
-
Publication number: 20140301939Abstract: The present invention provides an ammonium perrhenate containing less than 5 ppm of potassium.Type: ApplicationFiled: June 20, 2014Publication date: October 9, 2014Inventors: ARMIN OLBRICH, MATTHIAS JAHN, JULIANE MEESE-MARKTSCHEFFEL, RUEDIGER ZERTANI
-
Patent number: 8795509Abstract: A process for preparing a pure ammonium perrhenate includes producing a first aqueous suspension containing an ammonium perrhenate. A stoichiometric amount of a nitric acid is added to the first aqueous suspension so as to produce a second suspension. The second suspension is introduced into a cathode space of an electrolysis cell. The electrolysis cell is divided by a cation-exchange membrane into the cathode space and an anode space. The nitric acid is cathodically reduced to a nitrous acid in the cathode space by applying an electric potential. The nitrous acid is reacted with ammonium ions of the ammonium perrhenate so as to form an aqueous perrhenic acid. Potassium ions are removed from the aqueous perrhenic acid. At least a stoichiometric amount of ammonia is added to the aqueous perrhenic acid so as to produce the pure ammonium perrhenate.Type: GrantFiled: April 29, 2009Date of Patent: August 5, 2014Assignee: H. C. Starch GmbHInventors: Armin Olbrich, Matthias Jahn, Juliane Meese-Marktscheffel, Ruediger Zertani
-
Patent number: 8545794Abstract: The invention relates to a powder compound of the formula NiaMbOx(OH)y, wherein M represents Co and at least one element selected from the group consisting of Fe, Zn, Al, Sr, Mg, or Ca and mixtures thereof, or M represents Co Mn and Fe, wherein 0.6?a<1.0, 0<b?0.4, 0<x?0.60, and 1.4?y<2, wherein the powder compound has a particle size distribution d50 value, measured in accordance with ASTM B 822, of <5 ?m, and wherein a ratio of tap density, measured in accordance with ASTM B 527, to the particle size distribution d50 value is at least 0.4 g/cm3. The invention also relates to a process for preparing the compound and its uses.Type: GrantFiled: September 2, 2008Date of Patent: October 1, 2013Assignee: H.C. Starck GmbHInventors: Matthias Jahn, Gerd Malkowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
-
Publication number: 20110300470Abstract: The invention relates to a device and a method for the production of compounds by precipitation of solids from solutions, the physical and chemical properties of the solid particles formed on precipitation being flexible and can be independently fixable. Custom products can thus be produced with very high space-time yields and a particulate nickel/cobalt mixed hydroxide of formula NixCo1-x(OH)2, with a BET surface area of 20 m2/g and a tap density of greater than 2.4 g/cm3.Type: ApplicationFiled: March 20, 2007Publication date: December 8, 2011Applicant: H.C. STARCK GMBHInventors: Armin Olbrich, Juliane Meese-Marktscheffel, Matthias Jahn, Rüdiger Zertani, Gerd Maikowske, Sven Albrecht, Stefan Malcus, Josef Schmoll, Gabriele Christine Schmoll, Christian Peter Schmoll, Wolfgang Josef Schmoll, Volker Schmoll, Georg Wilhelm Schmoll, Michael Kruft
-
Publication number: 20110180748Abstract: The invention is directed to a pulverulent compound of the formula NiaM1bM2bOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3?a?0.83, 0.1?b?0.5, 0.01?c?0.5, 0.01?x?0.99 and 1.01?y?1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·?m. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.Type: ApplicationFiled: July 23, 2008Publication date: July 28, 2011Applicant: H.C. Starck GmbHInventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
-
Publication number: 20110123709Abstract: A process for preparing a pure ammonium perrhenate includes producing a first aqueous suspension containing an ammonium perrhenate. A stoichiometric amount of a nitric acid is added to the first aqueous suspension so as to produce a second suspension. The second suspension is introduced into a cathode space of an electrolysis cell. The electrolysis cell is divided by a cation-exchange membrane into the cathode space and an anode space. The nitric acid is cathodically reduced to a nitrous acid in the cathode space by applying an electric potential. The nitrous acid is reacted with ammonium ions of the ammonium perrhenate so as to form an aqueous perrhenic acid. Potassium ions are removed from the aqueous perrhenic acid. At least a stoichiometric amount of ammonia is added to the aqueous perrhenic acid so as to produce the pure ammonium perrhenate.Type: ApplicationFiled: April 29, 2009Publication date: May 26, 2011Applicant: H.C. Starck GMBHInventors: Armin Olbrich, Matthias Jahn, Juliane Meese-Marktscheffel, Ruediger Zertani
-
Publication number: 20100310869Abstract: Powdery compounds of the formulation NiaMbOx(OH)y, a procedure to produce the same, and the use of the same as active material for nickel metal hydride batteries and/or as precursor for the production of lithium compounds for use in secondary lithium batteries.Type: ApplicationFiled: September 2, 2008Publication date: December 9, 2010Applicant: H.C. Starck GmbhInventors: Matthias Jahn, Gerd Maikowski, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
-
Publication number: 20090255372Abstract: The invention relates to a process for recovering valuable metals from a superalloy which has the steps of digesting the superalloy in a salt melt. The salt melt contains 60-95% by weight of NaOH and 5-40% by weight of Na2SO4.Type: ApplicationFiled: June 29, 2007Publication date: October 15, 2009Applicant: H.C. STARCK GMBHInventors: Armin Olbrich, Juliane Meese-Marktscheffel, Matthias Jahn, Rüdiger Zertani, Viktor Stoller, Michael Erb, Karl-Heinz Heine, Uwe Kutzler