Patents by Inventor Rui Jorge Coelho

Rui Jorge Coelho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230081205
    Abstract: The present invention lies within the field of construction materials and concerns a process for separating the constituents of hardened concrete, with the aim of extracting the cementitious fraction to be used in the production of thermoactivated recycled cement, involving the essential steps of: (a) crushing the concrete waste; (b) screening the crushed material to separate material smaller than about 1 mm; (c) fragmenting material larger than 1 mm; (d) screening material smaller than 1 mm into various granulometric fractions; (e) high intensity magnetic separation of the material; (f) grinding of the cementitious fraction resulting from the magnetic separation in the previous step to a size that allows its efficient thermoactivation; and (g) obtaining a thermoactivated recycled cement.
    Type: Application
    Filed: February 23, 2021
    Publication date: March 16, 2023
    Inventors: José Alexandre de Brito Aleixo BOGAS, Manuel Francisco Costa PEREIRA, Ana Mafalda Saldanha GUEDES, Ana Chambel CARRIÇO, Susana HU, Rui Jorge Coelho de SOUSA
  • Publication number: 20220297091
    Abstract: A mixed oxide, a catalytic composition, a catalytic wall-flow monolith, the use of the mixed oxide and the process of the preparation of the mixed oxide. The mixed oxide comprises zirconium, cerium, lanthanum and optionally at least one rare earth element other than cerium and other than lanthanum. The catalytic composition and the wall-flow monolith comprise the particles of the mixed oxide. The use of the mixed oxide is in the preparation of a coating on a filter. The process of preparation of the mixed oxide consists jet milling. The mixed oxide is a compromise between a calibrated size and a low viscosity when in the form of an aqueous slurry while retaining a high specific surface area and a high pore volume.
    Type: Application
    Filed: July 15, 2020
    Publication date: September 22, 2022
    Inventors: Simon IFRAH, Rui JORGE COELHO MARQUES, Wei LI, Ling ZHU
  • Patent number: 9901915
    Abstract: The composition according to the invention includes a perovskite of the formula LaMO3, where M is at least one element selected from among iron, aluminium or manganese, in the form of particles dispersed on an alumina or aluminium oxyhydroxide substrate, characterized in that after calcination at 700° C. for 4 hours, the perovskite is in the form of a pure crystallographic phase, and in that the size of the perovskite particles does not exceed 15 nm. The composition according to the invention can be used in the field of catalysis.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: February 27, 2018
    Assignee: Rhodia Operations
    Inventors: Simon Ifrah, Olivier Larcher, Rui Jorge Coelho Marques, Michael Lallemand, Julien Hernandez
  • Patent number: 9169129
    Abstract: A composition based on cerium, zirconium and tungsten is described. The composition has a content expressed as an oxide, of which cerium is from 5% to 30% of the composition, tungsten is from 2% to 17% of the composition, and the remainder of the composition is zirconium. After aging at 750° C. under an air atmosphere including 10% water, it has a two-phase crystallographic structure having a tetragonal zirconia phase and a monoclinic zirconia phase, with no presence of a crystalline phase including tungsten. The composition can be used as a catalyst, especially in an SCR process.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: October 27, 2015
    Assignees: RHODIA OPERATIONS, MAGNESIUM ELEKTRON LIMITED
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jane Harris, Clare Jones
  • Publication number: 20150148219
    Abstract: The composition according to the invention includes a perovskite of the formula LaMO3, where M is at least one element selected from among iron, aluminium or manganese, in the form of particles dispersed on an alumina or aluminium oxyhydroxide substrate, characterized in that after calcination at 700° C. for 4 hours, the perovskite is in the form of a pure crystallographic phase, and in that the size of the perovskite particles does not exceed 15 nm. The composition according to the invention can be used in the field of catalysis.
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: Simon IFRAH, Olivier LARCHER, Rui JORGE COELHO MARQUES, Michael LALLEMAND, Julien HERNANDEZ
  • Patent number: 8974764
    Abstract: A composition is described that includes a perovskite of the formula LaMO3, where M is at least one element selected from among iron, aluminum or manganese, in the form of particles dispersed on an alumina or aluminum oxyhydroxide substrate, wherein after calcination at 700° C. for 4 hours, the perovskite is in the form of a pure crystallographic phase, and in that the size of the perovskite particles does not exceed 15 nm. The described composition can be used in the field of catalysis.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: March 10, 2015
    Assignee: Rhodia Operations
    Inventors: Simon Ifrah, Olivier Larcher, Rui Jorge Coelho Marques, Michael Lallemand, Julien Hernandez
  • Patent number: 8734742
    Abstract: A method is described for treating a gas including nitrogen oxides (NOx). The method can include conducting a reduction reaction of the nitrogen oxides with a nitrogen reducing agent. Further described, is a catalyst used for the reduction reaction which is a catalytic system including a composition based on cerium oxide and including niobium oxide in a proportion by a mass of from 2% to 20%.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 27, 2014
    Assignee: Rhodia Operations
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jayne Harris, Clare Jones
  • Patent number: 8623778
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide selected from among zirconium oxide, titanium oxide or a mixed zirconium/titanium oxide deposited onto an alumina-based or aluminum-oxyhydroxide-based support, wherein, after calcination for 4 hours at 900° C., the at least one support oxide is in the form of nanoscale particles deposited onto the support, the size of said particles being at most 10 nm when the at least one supported oxide is based is zirconium oxide and being at most 15 nm when the at least one supported oxide is titanium oxide or a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 7, 2014
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Patent number: 8563462
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide, based on a zirconium oxide, a titanium oxide or a mixed zirconium/titanium oxide deposited onto a silica based support, wherein, after calcination for 4 hours at 900° C., the supported oxide is in the form of nanoscale particles deposited onto the support, the size of the particles being at most 5 nm when the at least one supported oxide is based on a zirconium oxide, being at most 10 nm when the at least one supported oxide is based on a titanium oxide and being at most 8 nm when the at least one supported oxide is based on a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 22, 2013
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Publication number: 20130210617
    Abstract: A composition based on cerium and niobium oxide in a proportion of niobium oxide of 2% to 20% is described. This composition can include zirconium oxide, optionally 50% of cerium oxide, 2% to 20% of niobium oxide, and at most 48% of zirconium oxide. Also described, is the use of the composition for treating exhaust gases.
    Type: Application
    Filed: July 5, 2011
    Publication date: August 15, 2013
    Applicant: Rhodia Operations
    Inventors: Julien Hernandez, Rui Jorge Coelho Marques, Emmanuel Rohart
  • Publication number: 20130195743
    Abstract: A method is described for treating a gas including nitrogen oxides (NOx). The method can include conducting a reduction reaction of the nitrogen oxides with a nitrogen reducing agent. Further described, is a catalyst used for the reduction reaction which is a catalytic system including a composition based on cerium oxide and including niobium oxide in a proportion by a mass of from 2% to 20%.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 1, 2013
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jayne Harris, Clare Jones
  • Publication number: 20130164201
    Abstract: A composition based on cerium, zirconium and tungsten is described. The composition has a content expressed as an oxide, of which cerium is from 5% to 30% of the composition, tungsten is from 2% to 17% of the composition, and the remainder of the composition is zirconium. After aging at 750° C. under an air atmosphere including 10% water, it has a two-phase crystallographic structure having a tetragonal zirconia phase and a monoclinic zirconia phase, with no presence of a crystalline phase including tungsten. The composition can be used as a catalyst, especially in an SCR process.
    Type: Application
    Filed: May 17, 2011
    Publication date: June 27, 2013
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jane Harris, Clare Jones
  • Publication number: 20120046163
    Abstract: A composition is described that includes a perovskite of the formula LaMO3, where M is at least one element selected from among iron, aluminium or manganese, in the form of particles dispersed on an alumina or aluminium oxyhydroxide substrate, wherein after calcination at 700° C. for 4 hours, the perovskite is in the form of a pure crystallographic phase, and in that the size of the perovskite particles does not exceed 15 nm. The described composition can be used in the field of catalysis.
    Type: Application
    Filed: February 25, 2010
    Publication date: February 23, 2012
    Applicant: RHODIA OPERATIONS
    Inventors: Simon Ifrah, Olivier L'archer, Rui Jorge Coelho Marques, Michael Lallemand, Julien Hernandez
  • Publication number: 20110053763
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide selected from among zirconium oxide, titanium oxide or a mixed zirconium/titanium oxide deposited onto an alumina-based or aluminum-oxyhydroxide-based support, wherein, after calcination for 4 hours at 900° C., the at least one support oxide is in the form of nanoscale particles deposited onto the support, the size of said particles being at most 10 nm when the at least one supported oxide is based is zirconium oxide and being at most 15 nm when the at least one supported oxide is titanium oxide or a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Application
    Filed: February 23, 2009
    Publication date: March 3, 2011
    Applicant: RHODIA OPERATIONS
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Publication number: 20110045967
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide, based on a zirconium oxide, a titanium oxide or a mixed zirconium/titanium oxide deposited onto a silica based support, wherein, after calcination for 4 hours at 900° C., the at least one supported oxide is in the form of nanoscale particles deposited onto the support, the size of the particles being at most 5 nm when the at least one supported oxide is based on a zirconium oxide, being at most 10 nm when the at least one supported oxide is based on a titanium oxide and being at most 8 nm when the at least one supported oxide is based on a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Application
    Filed: February 23, 2009
    Publication date: February 24, 2011
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Publication number: 20030097448
    Abstract: A method for controlling an HTTP client comprises the steps of establishing a connection between the HTTP client and a server and sending an event from the server to the HTTP client. The event passes over the HTTP connection and controls the HTTP client. The HTTP server sends the event without receiving a request for the event from the first HTTP client.
    Type: Application
    Filed: November 21, 2001
    Publication date: May 22, 2003
    Inventors: Francisco Jose Menezes, Miguel Jorge Baltazar, Rui Jorge Coelho