Patents by Inventor Rui Qiao

Rui Qiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11895753
    Abstract: This disclosure provides methods, devices, and systems for controlling motion-activated switches. The present implementations more specifically relate to relay controller that prevent motion-activated switches from turning off devices associated with an environment in which people are present. In some aspects, a motion-activated switch may include a relay controller coupled to a motion sensor, a camera, and a relay. The motion sensor outputs a motion trigger to the relay controller responsive to detecting motion in an environment. The motion trigger may cause the relay controller to acquire one or more images of the environment, via the camera, and selectively toggle the relay based on the acquired images. For example, the relay controller may close the relay responsive to identifying an image that includes an object of interest or may open the relay controller may open the relay responsive to identifying an image that does not include an object of interest.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: February 6, 2024
    Assignee: Synaptics Incorporated
    Inventors: Beichen Chen, Thavatchai Montreevat, Vineet Ganju, Rui Qiao
  • Patent number: 11747950
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: September 5, 2023
    Assignee: Apple Inc.
    Inventors: Jonah A. Harley, Peter W. Richards, Brian Q. Huppi, Omar Sze Leung, Dhaval N. Shah, Martin P. Grunthaner, Steven P. Hotelling, Miguel C. Christophy, Vivek Katiyar, Tang Yew Tan, Christopher J. Butler, Erik G. De Jong, Ming Sartee, Rui Qiao, Steven J. Martisauskas, Storrs T. Hoen, Richard Hung Minh Dinh, Lee E. Hooton, Ian A. Spraggs, Sawyer I. Cohen, David A. Pakula
  • Publication number: 20230217571
    Abstract: This disclosure provides methods, devices, and systems for controlling motion-activated switches. The present implementations more specifically relate to relay controller that prevent motion-activated switches from turning off devices associated with an environment in which people are present. In some aspects, a motion-activated switch may include a relay controller coupled to a motion sensor, a camera, and a relay. The motion sensor outputs a motion trigger to the relay controller responsive to detecting motion in an environment. The motion trigger may cause the relay controller to acquire one or more images of the environment, via the camera, and selectively toggle the relay based on the acquired images. For example, the relay controller may close the relay responsive to identifying an image that includes an object of interest or may open the relay controller may open the relay responsive to identifying an image that does not include an object of interest.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Inventors: Beichen CHEN, Thavatchai MONTREEVAT, Vineet GANJU, Rui QIAO
  • Patent number: 11694769
    Abstract: The present systems and methods introduce deep learning to de novo peptide sequencing from tandem mass spectrometry data, and in particular mass spectrometry data obtained by data-independent acquisition. The systems and methods achieve improvements in sequencing accuracy over existing systems and methods and enables complete assembly of novel protein sequences without assisting databases. To sequence peptides from mass spectrometry data obtained by data-independent acquisition, precursor profiles representing intensities of one or more precursor ion signals associated with a precursor retention time and fragment ion spectra representing signals from fragment ions and fragment retention times are fed into a neural network.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 4, 2023
    Assignee: BIOINFORMATICS SOLUTIONS INC.
    Inventors: Baozhen Shan, Ngoc Hieu Tran, Ming Li, Lei Xin, Rui Qiao, Xin Chen, Chuyi Liu
  • Patent number: 11644470
    Abstract: The present systems and methods are directed to de novo identification of peptide sequences from tandem mass spectrometry data. The systems and methods uses unconverted mass spectrometry data from which features are extracted. Using unconverted mass spectrometry data reduces the loss of information and provides more accurate sequencing of peptides. The systems and methods combine deep learning and neural networks to sequencing of peptides.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: May 9, 2023
    Assignee: BIOINFORMATICS SOLUTIONS INC.
    Inventors: Rui Qiao, Ngoc Hieu Tran, Lei Xin, Xin Chen, Baozhen Shan, Ali Ghodsi, Ming Li
  • Patent number: 10881307
    Abstract: The present disclosure generally relate s to blood pressure monitoring. In some embodiments, methods and devices for measuring a mean arterial pressure and/or for monitoring blood pressure changes of a user are provided. Blood pressure measured by one or more pressure sensors may be adjusted using one or more correction factors. The use of the one or more correction factors disclosed herein may allow for more compact, convenient, and/or accurate wearable blood pressure measurement devices and methods. In particular, wrist-worn devices may be provided which are less bulky than current devices and may facilitate more frequent and accurate blood pressure monitoring.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Thomas J. Sullivan, Ravi K. Narasimhan, Rui Qiao, Derek Park-Shing Young, Robert K. Montgomery, II, Mohsen Mollazadeh, Zijing Zeng, Vasco D. Polyzoev, Richard C. Kimoto
  • Patent number: 10849555
    Abstract: The present disclosure generally relate s to blood pressure monitoring. In some embodiments, methods and devices for measuring a mean arterial pressure and/or for monitoring blood pressure changes of a user are provided. Blood pressure measured by one or more pressure sensors may be adjusted using one or more correction factors. The use of the one or more correction factors disclosed herein may allow for more compact, convenient, and/or accurate wearable blood pressure measurement devices and methods. In particular, wrist-worn devices may be provided which are less bulky than current devices and may facilitate more frequent and accurate blood pressure monitoring.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 1, 2020
    Assignee: Apple Inc.
    Inventors: Thomas J. Sullivan, Ravi K. Narasimhan, Rui Qiao, Derek Park-Shing Young, Robert K. Montgomery, II, Mohsen Mollazadeh, Zijing Zeng, Vasco D. Polyzoev, Richard C. Kimoto
  • Publication number: 20200326348
    Abstract: The present systems and methods are directed to de novo identification of peptide sequences from tandem mass spectrometry data. The systems and methods uses unconverted mass spectrometry data from which features are extracted. Using unconverted mass spectrometry data reduces the loss of information and provides more accurate sequencing of peptides. The systems and methods combine deep learning and neural networks to sequencing of peptides.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 15, 2020
    Inventors: Rui QIAO, Ngoc Hieu Tran, Lei XIN, Xin CHEN, Baozhen Shan, Ali GHODSI, Ming LI
  • Patent number: 10738202
    Abstract: A method of thermally insulating a surface, the method comprising applying a coating of a thermally insulating composition onto said surface, wherein said thermally insulating composition comprises: (i) hollow spherical nanoparticles having a mean particle size of less than 800 nm in diameter and a particle size distribution in which at least 90% of the hollow spherical nanoparticles have a size within ±20% of said mean particle size, and a first layer of cationic or anionic molecules attached to said surfaces of the hollow spherical nanoparticles; and (ii) a second layer of molecules of opposite charge to the first layer of molecules, wherein said second layer of molecules of opposite charge are ionically associated with said first layer of molecules, wherein the molecules in said second layer have at least eight carbon atoms.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 11, 2020
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Virginia Tech
    Inventors: Sheng Dai, Jinshui Zhang, Xueguang Jiang, Shannon Mark Mahurin, Xiao-Guang Sun, Huimin Luo, Rui Qiao
  • Publication number: 20200243164
    Abstract: The present systems and workflows identify neoantigens for cancer immunotherapy by introducing deep learning to de novo peptide sequencing from tandem mass spectrometry data. The systems and workflow allows for patient specific identification of neoantigens for personalized immunotherapy.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Inventors: Rui Qiao, Ngoc Hieu Tran, Lei Xin, Xin Chen, Baozhen Shan, Ming Li
  • Publication number: 20190369779
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Jonah A. Harley, Peter W. Richards, Brian Q. Huppi, Omar Sze Leung, Dhaval N. Shah, Martin P. Grunthaner, Steven P. Hotelling, Miguel C. Christophy, Vivek Katiyar, Tang Yew Tan, Christopher J. Butler, Erik G. De Jong, Ming Sartee, Rui Qiao, Steven J. Martisauskas, Storrs T. Hoen, Richard Hung Minh Dinh, Lee E. Hooton, Ian A. Spraggs, Sawyer I. Cohen, David A. Pakula
  • Patent number: 10386970
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: August 20, 2019
    Assignee: Apple Inc.
    Inventors: Jonah A. Harley, Peter W. Richards, Brian Q. Huppi, Omar Sze Leung, Dhaval N. Shah, Martin P. Grunthaner, Steven P. Hotelling, Miguel C Christophy, Vivek Katiyar, Tang Yew Tan, Christopher J. Butler, Erik G. de Jong, Ming Sartee, Rui Qiao, Steven J. Martisauskas, Storrs T. Hoen, Richard Hung Minh Dinh, Lee E. Hooton, Ian A. Spraggs, Sawyer I. Cohen, David A. Pakula
  • Publication number: 20190147983
    Abstract: The present systems and methods introduce deep learning to de novo peptide sequencing from tandem mass spectrometry data, and in particular mass spectrometry data obtained by data-independent acquisition. The systems and methods achieve improvements in sequencing accuracy over existing systems and methods and enables complete assembly of novel protein sequences without assisting databases. To sequence peptides from mass spectrometry data obtained by data-independent acquisition, precursor profiles representing intensities of one or more precursor ion signals associated with a precursor retention time and fragment ion spectra representing signals from fragment ions and fragment retention times are fed into a neural network.
    Type: Application
    Filed: December 19, 2018
    Publication date: May 16, 2019
    Inventors: Baozhen Shan, Ngoc Hieu Tran, Ming Li, Lei Xin, Rui Qiao, Xin Chen, Chuyi Liu
  • Publication number: 20180194954
    Abstract: A method of thermally insulating a surface, the method comprising applying a coating of a thermally insulating composition onto said surface, wherein said thermally insulating composition comprises: (i) hollow spherical nanoparticles having a mean particle size of less than 800 nm in diameter and a particle size distribution in which at least 90% of the hollow spherical nanoparticles have a size within ±20% of said mean particle size, and a first layer of cationic or anionic molecules attached to said surfaces of the hollow spherical nanoparticles; and (ii) a second layer of molecules of opposite charge to the first layer of molecules, wherein said second layer of molecules of opposite charge are ionically associated with said first layer of molecules, wherein the molecules in said second layer have at least eight carbon atoms.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 12, 2018
    Inventors: Sheng DAI, Jinshui ZHANG, Xueguang JIANG, Shannon Mark Mahurin, Xiao-Guang SUN, Huimin LUO, Rui QIAO
  • Patent number: 10019085
    Abstract: A sensor layer, such as a force sensor layer, can be in included in an electronic device. The sensor layer includes a patterned compliant layer that is positioned between a first substrate and a second substrate. The patterned compliant layer includes multiple angled compliant elements that are angled at one or more angles with respect to the first and second substrates.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 10, 2018
    Assignee: Apple Inc.
    Inventors: Rui Qiao, Charley T. Ogata
  • Publication number: 20180081400
    Abstract: An electronic device having a housing that defines an interior volume, the housing being suitable for carrying at least a processor within the internal volume, the housing comprising an edge that defines an opening that provides access to the internal volume. The electronic device can have a cover carried at the edge of the housing and within the opening and having an external surface capable of receiving an external force and a sealing element disposed between the housing and the cover, with the sealing element preventing intrusion of liquid into the internal volume. The sealing element can include a sealing material and a sensor contained within the sealing material that senses that an external force is applied to the external surface of the cover and, in response, provides a signal to the processor.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 22, 2018
    Inventors: Sameer PANDYA, Rui QIAO, Richard D. SHUMA, William GREENBAUM
  • Patent number: 9891770
    Abstract: A sensor includes a patterned compliant layer positioned between two substrates. Each substrate can include one or more conductive electrodes, with each electrode of one substrate paired with a respective electrode of the other substrate. Each pair of conductive electrodes forms a capacitor. Several methods are disclosed that can be used to produce the patterned compliant layer.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: February 13, 2018
    Assignee: Apple Inc.
    Inventors: Po-Jui Chen, Soyoung Kim, Kuo-Hua Sung, Hui Chen, Rui Qiao
  • Publication number: 20170090618
    Abstract: A sensor layer, such as a force sensor layer, can be in included in an electronic device. The sensor layer includes a patterned compliant layer that is positioned between a first substrate and a second substrate. The patterned compliant layer includes multiple angled compliant elements that are angled at one or more angles with respect to the first and second substrates.
    Type: Application
    Filed: January 25, 2016
    Publication date: March 30, 2017
    Inventors: Rui Qiao, Charley T. Ogata
  • Publication number: 20170060292
    Abstract: A sensor includes a patterned compliant layer positioned between two substrates. Each substrate can include one or more conductive electrodes, with each electrode of one substrate paired with a respective electrode of the other substrate. Each pair of conductive electrodes forms a capacitor. Several methods are disclosed that can be used to produce the patterned compliant layer.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Po-Jui Chen, Soyoung Kim, Kuo-Hua Sung, Hui Chen, Rui Qiao
  • Publication number: 20150370376
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Application
    Filed: February 6, 2014
    Publication date: December 24, 2015
    Inventors: Jonah A. HARLEY, Peter W. RICHARDS, Brian Q. HUPPI, Omar Sze LEUNG, Dhaval N. SHAH, Martin P. GRUNTHANER, Steven P. HOTELLING, Miguel C CHRISTOPHY, Vivek KATIYAR, Tang Yew TAN, Christopher J. BUTLER, Erik G. DE JONG, Ming SARTEE, Rui QIAO, Steven J. MARTISAUSKAS, Storrs T. HOEN, Richard Hung Minh DINH, Lee E. HOOTON, Ian A. SPRAGGS, Sawyer I. COHEN, David A. PAKULA