Patents by Inventor Rujul M. Mehta

Rujul M. Mehta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230312894
    Abstract: A bimodal poly(ethylene-co-1-hexene) copolymer composition, methods of making and using, and manufactured articles made therefrom and uses thereof.
    Type: Application
    Filed: September 24, 2021
    Publication date: October 5, 2023
    Inventors: Rujul M. Mehta, Timothy R. Lynn, Cliff R. Mure, Chuan C. He
  • Patent number: 11174410
    Abstract: The present invention relates to a method of coating a pipeline field joint comprising the steps of (a) applying a layer of a coating material composition comprising (i) a propylene polymer and (ii) a substantially linear ethylene copolymer, a linear ethylene copolymer, or mixtures thereof, to the uncoated region of the field joint, preferably the coating is applied by injection molding.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 16, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Bhawesh Kumar, Mark W. Brown, II, Rujul M. Mehta
  • Publication number: 20210277271
    Abstract: A polypropylene/thermoplastic vulcanizate insulative coating is disclosed. The coating is particularly suited for subsea applications, in particular providing insulation to joints in oil well pipes and other machinery. The coating exhibits mechanical properties superior to joint insulation coatings known in the art, especially in combination with other insulation coatings.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 9, 2021
    Inventors: Bhawesh Kumar, Rujul M. Mehta
  • Publication number: 20200354601
    Abstract: The present invention relates to a method of coating a pipeline field joint comprising the steps of (a) applying a layer of a coating material composition comprising (i) a propylene polymer and (ii) a substantially linear ethylene copolymer, a linear ethylene copolymer, or mixtures thereof, to the uncoated region of the field joint, preferably the coating is applied by injection molding.
    Type: Application
    Filed: November 8, 2018
    Publication date: November 12, 2020
    Inventors: Bhawesh Kumar, Mark W. Brown, II, Rujul M. Mehta
  • Publication number: 20200149674
    Abstract: The present invention relates to a method of coating a pipeline field joint comprising the steps of (1) applying a layer of a first coating material comprising a substantially linear ethylene polymer, a linear ethylene polymer, or an olefin block copolymer to the uncoated region of the field joint and (2) subsequently applying a layer of a second coating material comprising a polyurethane, an epoxy, or a cross linked polyethylene to the field joint.
    Type: Application
    Filed: April 17, 2018
    Publication date: May 14, 2020
    Inventors: Rujul M. Mehta, Mark W. Brown, II, Amanda M. Goodman, Bhawesh Kumar, Qichun Wan
  • Publication number: 20180043584
    Abstract: The present invention relates to a process to reduce internal stresses in insulation molded onto complex pipes, preferably complex subsea pipe, to reduce cracking in the molded insulation. Insulation materials applies to complex pipes comprising branches, i.e., valves, and the like, may be susceptible to cracking at, or near where the branch connects to the pipe as the coating of insulation material cures or hardens. The process of the present invention aims to reduce post molded cracking by reducing molded in stress at the branch/pipe junction. This is accomplished by providing a preform at or near a branch/pipe junction prior to applying the coating of insulation material.
    Type: Application
    Filed: March 18, 2016
    Publication date: February 15, 2018
    Inventors: Jie Feng, Mark W. Brown, Xue Chen, Pankaj Gupta, Dwight D. Latham, Liangkai Ma, Michael T. Malanga, Rujul M. Mehta, Kamesh R. Vyakaranam, Jeffrey D. Wenzel, Jeffery D. Zawisza