Patents by Inventor Rulian WEN

Rulian WEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12107192
    Abstract: A preparation method for a metal-doped gallium oxide transparent conductive thin film for ultraviolet waveband includes: growing a contact layer thin film (2) on a substrate (1) first, and annealing the grown contact layer thin film (2) in a nitrogen-oxygen atmosphere at 400° C. to 600° C. through a rapid thermal annealing furnace; growing a first Ga2O3 thin film (31) by sputtering through magnetron sputtering under argon conditions; growing a doped thin film (4) by sputtering through magnetron sputtering under argon conditions; growing a second Ga2O3 thin film (32) by sputtering through magnetron sputtering under argon conditions; and annealing the grown thin films in a nitrogen-oxygen atmosphere at 500° C. to 600° C. through a rapid thermal annealing furnace, so that permeation, diffusion and fusion occur between thin film materials to form a metal-doped Ga2O3 thin film (5). A metal-doped gallium oxide transparent conductive thin film for ultraviolet waveband is provided.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: October 1, 2024
    Assignees: ZHONGSHAN INSTITUTE OF MODERN INDUSTRIAL TECHNOLOGY, SOUTH CHINA UNIVERSITY OF TECHNOLOGY, SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Hong Wang, Rulian Wen, Xiaolong Hu, Quanbin Zhou
  • Publication number: 20210305460
    Abstract: A preparation method for a metal-doped gallium oxide transparent conductive thin film for ultraviolet waveband includes: growing a contact layer thin film (2) on a substrate (1) first, and annealing the grown contact layer thin film (2) in a nitrogen-oxygen atmosphere at 400° C. to 600° C. through a rapid thermal annealing furnace; growing a first Ga2O3 thin film (31) by sputtering through magnetron sputtering under argon conditions; growing a doped thin film (4) by sputtering through magnetron sputtering under argon conditions; growing a second Ga2O3 thin film (32) by sputtering through magnetron sputtering under argon conditions; and annealing the grown thin films in a nitrogen-oxygen atmosphere at 500° C. to 600° C. through a rapid thermal annealing furnace, so that permeation, diffusion and fusion occur between thin film materials to form a metal-doped Ga2O3 thin film (5). A metal-doped gallium oxide transparent conductive thin film for ultraviolet waveband is provided.
    Type: Application
    Filed: September 17, 2019
    Publication date: September 30, 2021
    Applicants: ZHONGSHAN INSTITUTE OF MODERN INDUSTRIAL TECHNOLOGY, SOUTH CHINA UNIVERSITY OF TECHNOLOGY, SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Hong WANG, Rulian WEN, Xiaolong HU, Quanbin ZHOU
  • Patent number: 11101406
    Abstract: An efficient wide bandgap GaN-based LED chip based on a surface plasmon effect and a manufacturing method therefor. The efficient wide bandgap GaN-based LED chip is of a flip-chip structure, and comprises, from bottom to top in sequence, a substrate, a buffer layer, an unintentionally doped GaN layer, an n-GaN layer, a quantum well layer, an electron blocking layer, a p-GaN layer, a metallic reflecting mirror layer, a passivation layer, a p-electrode layer, an n-electrode layer; and a position of a bottom surface of the metallic reflecting mirror layer connected to a surface of the p-GaN layer is provided with a micro-nano composite metal structure. A micro metal structure comprises alternating protrusion portions and recess portions; and a nano metal structure is distributed on an interface of the micro metal structure and the p-GaN layer.
    Type: Grant
    Filed: December 25, 2016
    Date of Patent: August 24, 2021
    Assignee: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Huamao Huang, Hong Wang, Xiaolong Hu, Zhuobo Yang, Rulian Wen, Wei Shi
  • Publication number: 20200006596
    Abstract: A broadband efficient GaN-based LED chip based on a surface plasmon effect and a manufacturing method therefor. The broadband efficient GaN-based LED chip is of a flip-chip structure, and comprises, from bottom to top in sequence, a substrate, a buffer layer, an unintentionally doped GaN layer, an n-GaN layer, a quantum well layer, an electron blocking layer, a p-GaN layer, a metallic reflecting mirror layer, a passivation layer, a p-electrode layer, an n-electrode layer; and a position of a bottom surface of the metallic reflecting mirror layer connected to a surface of the p-GaN layer is provided with a micro-nano composite metal structure. A micro metal structure comprises alternating protrusion portions and recess portions; and a nano metal structure is distributed on an interface of the micro metal structure and the p-GaN layer.
    Type: Application
    Filed: December 25, 2016
    Publication date: January 2, 2020
    Applicant: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Huamao HUANG, Hong WANG, Xiaolong HU, Zhuobo YANG, Rulian WEN, Wei SHI