Patents by Inventor Rulon J. Larsen, III

Rulon J. Larsen, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230324436
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: March 21, 2023
    Publication date: October 12, 2023
    Applicant: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 11630127
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: April 18, 2023
    Assignee: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 11211228
    Abstract: Embodiments are directed to forming reentrant multi-layer micro-scale or millimeter scale three dimensional structures, parts, components, or devices where each layer is formed from a plurality of deposited materials and more specifically where each layer is formed from at least one metal structural material and at least one organic sacrificial material (e.g. polymer) that are co-planarized and a portion of the sacrificial material located on a plurality of layers is removed after formation of the plurality of layers via one or more plasma etching operations or one or more neutral radical etching operations.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: December 28, 2021
    Assignee: Microfabrica Inc.
    Inventors: Rulon J. Larsen, III, Adam L. Cohen
  • Publication number: 20200292579
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: April 3, 2020
    Publication date: September 17, 2020
    Applicant: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 10641792
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 5, 2020
    Assignee: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20190212364
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Applicant: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 10297421
    Abstract: Embodiments are directed to forming reentrant multi-layer micro-scale or millimeter scale three dimensional structures, parts, components, or devices where each layer is formed from a plurality of deposited materials and more specifically where each layer is formed from at least one metal structural material and at least one organic sacrificial material (e.g. polymer) that are co-planarized and a portion of the sacrificial material located on a plurality of layers is removed after formation of the plurality of layers via one or more plasma etching operations.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: May 21, 2019
    Assignee: Microfabrica Inc.
    Inventors: Rulon J. Larsen, III, Adam L. Cohen
  • Patent number: 10215775
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: February 26, 2019
    Assignee: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20180080956
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: December 31, 2015
    Publication date: March 22, 2018
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 9919472
    Abstract: Embodiments are directed to methods of producing devices using modified multi-layer, multi-material electrochemical fabrication processes and/or using a laser cutting processes wherein individual layers or layer groups are formed and then stacked and bonded to produce prototypes or production parts. The methods can reduce the cost and lead time of prototyping when compared with previous multi-layer, multi-material electrochemical fabrication processes and can also reduce the lead time of production quantities, by allowing multiple layers of a multilayer device to be formed simultaneously, e.g. in parallel on the same wafer. Additionally, these methods may be used to extend the maximum height to which parts may practically be made. Finally, the methods allow geometries that are impossible, impractical or difficult to release (e.g. microfluidic devices such as pumps or parts with long, narrow channels) to be fabricated in multiple pieces and then joined after full or partial release.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 20, 2018
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Rulon J. Larsen, III, Uri Frodis, Kieun Kim, Dennis R. Smalley
  • Patent number: 9671429
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that (1) partially coats the surface of the structure, (2) completely coats the surface of the structure, and/or (3) completely coats the surface of structural material of each layer from which the structure is formed including interlayer regions. These embodiments incorporate both the core material and the shell material into the structure as each layer is formed along with a sacrificial material that is removed after formation of all layers of the structure. In some embodiments the core material may be a material that would be removed with sacrificial material if it were accessible by an etchant during removal of the sacrificial material.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: June 6, 2017
    Assignee: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20160231356
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: December 31, 2015
    Publication date: August 11, 2016
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20140134453
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that (1) partially coats the surface of the structure, (2) completely coats the surface of the structure, and/or (3) completely coats the surface of structural material of each layer from which the structure is formed including interlayer regions. These embodiments incorporate both the core material and the shell material into the structure as each layer is formed along with a sacrificial material that is removed after formation of all layers of the structure. In some embodiments the core material may be a material that would be removed with sacrificial material if it were accessible by an etchant during removal of the sacrificial material.
    Type: Application
    Filed: September 4, 2013
    Publication date: May 15, 2014
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley