Patents by Inventor Rumen Iliew

Rumen Iliew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10001631
    Abstract: A film element of an EUV-transmitting wavefront correction device is arranged in a beam path and includes a first layer of first layer material having a first complex refractive index n1=(1??1)+iß1, with a first optical layer thickness, which varies locally over the used region in accordance with a first layer thickness profile, and a second layer of second layer material having a second complex refractive index n2=(1??2)+iß2, with a second optical layer thickness, which varies locally over the used region in accordance with a second layer thickness profile. The first and second layer thickness profiles differ. The deviation ?1 of the real part of the first refractive index from 1 is large relative to the absorption coefficient ß1 of the first layer material and the deviation ?2 of the real part of the second refractive index from 1 is small relative to the absorption coefficient ß2 of the second layer material.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: June 19, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Maria Schoemer, Hendrik Wagner, Christian Wald, Rumen Iliew, Thomas Schicketanz, Toralf Gruner, Walter Pauls, Holger Schmidt, Matthias Roesch
  • Publication number: 20170261730
    Abstract: A film element of an EUV-transmitting wavefront correction device is arranged in a beam path and includes a first layer of first layer material having a first complex refractive index n1=(1??1)+i?1, with a first optical layer thickness, which varies locally over the used region in accordance with a first layer thickness profile, and a second layer of second layer material having a second complex refractive index n2=(1??2)+i?2, with a second optical layer thickness, which varies locally over the used region in accordance with a second layer thickness profile. The first and second layer thickness profiles differ. The deviation ?1 of the real part of the first refractive index from 1 is large relative to the absorption coefficient ?1 of the first layer material and the deviation ?2 of the real part of the second refractive index from 1 is small relative to the absorption coefficient ?2 of the second layer material.
    Type: Application
    Filed: August 8, 2014
    Publication date: September 14, 2017
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Hendrik Wagner, Christian Wald, Rumen Iliew, Thomas Schicketanz, Toralf Gruner, Walter Pauls, Holger Schmidt
  • Patent number: 9709770
    Abstract: A mirror arrangement for an EUV projection exposure apparatus for microlithography comprises a plurality of mirrors each having a layer which is reflective in the EUV spectral range and to which EUV radiation can be applied, and having a main body. In this case, at least one mirror of the plurality of mirrors has at least one layer comprising a material having a negative coefficient of thermal expansion. Moreover, a method for operating the mirror arrangement and a projection exposure apparatus are described. At least one heat source is arranged, in order to locally apply heat in a targeted manner to the at least one layer having a negative coefficient of thermal expansion of the at least one mirror.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: July 18, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schoemer, Hendrik Wagner, Rumen Iliew, Walter Pauls
  • Patent number: 9470872
    Abstract: A reflective optical element for a microlithographic projection exposure apparatus, a mask inspection apparatus or the like. The reflective optical element has an optically effective surface, an element substrate (12, 32, 42, 52), a reflection layer system (14, 34, 44, 54) and at least one deformation reduction layer (15, 35, 45, 55, 58). When the optically effective surface (11, 31, 41, 51) is irradiated with electromagnetic radiation, a maximum deformation level of the reflection layer system is reduced in comparison with a deformation level of an analogously constructed reflective optical element without the deformation reduction layer.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: October 18, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Hendrik Wagner, Rumen Iliew, Walter Pauls
  • Patent number: 9348234
    Abstract: A projection objective of a microlithographic projection apparatus has a wavefront correction device (42) comprising a mirror substrate (44; 44a, 44b) that has two opposite optical surfaces (46, 48), through which projection light passes, and a circumferential rim surface (50) extending between the two optical surfaces (46, 48). A first and a second optical system (OS1, OS2) are configured to direct first and second heating light (HL1, HL2) to different portions of the rim surface (50) such that at least a portion of the first and second heating light enters the mirror substrate (44; 44a, 44b). A temperature distribution caused by a partial absorption of the heating light (HL1, HL2) results in a refractive index distribution inside the mirror substrate (44; 44a, 44b) that corrects a wavefront error.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: May 24, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schoemer, Martin von Hodenberg, Hendrik Wagner, Rumen Iliew
  • Publication number: 20160011521
    Abstract: A projection objective of a microlithographic projection apparatus comprises a wavefront correction device (42) comprising a mirror substrate (44; 44a, 44b) that has two opposite optical surfaces (46, 48), through which projection light passes, and a circumferential rim surface (50) extending between the two optical surfaces (46, 48). A first and a second optical system (OS1, OS2) are configured to direct first and second heating light (HL1, HL2) to different portions of the rim surface (50) such that at least a portion of the first and second heating light enters the mirror substrate (44; 44a, 44b). A temperature distribution caused by a partial absorption of the heating light (HL1, HL2) results in a refractive index distribution inside the mirror substrate (44; 44a, 44b) that corrects a wavefront error.
    Type: Application
    Filed: September 4, 2015
    Publication date: January 14, 2016
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Martin von Hodenberg, Hendrik Wagner, Rumen Iliew
  • Publication number: 20150168674
    Abstract: A mirror arrangement for an EUV projection exposure apparatus for microlithography comprises a plurality of mirrors each having a layer which is reflective in the EUV spectral range and to which EUV radiation can be applied, and having a main body. In this case, at least one mirror of the plurality of mirrors has at least one layer comprising a material having a negative coefficient of thermal expansion. Moreover, a method for operating the mirror arrangement and a projection exposure apparatus are described. At least one heat source is arranged, in order to locally apply heat in a targeted manner to the at least one layer having a negative coefficient of thermal expansion of the at least one mirror.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 18, 2015
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Hendrik Wagner, Rumen Iliew, Walter Pauls
  • Publication number: 20150116703
    Abstract: A reflective optical element for a microlithographic projection exposure apparatus, a mask inspection apparatus or the like. The reflective optical element has an optically effective surface, an element substrate (12, 32, 42, 52), a reflection layer system (14, 34, 44, 54) and at least one deformation reduction layer (15, 35, 45, 55, 58). When the optically effective surface (11, 31, 41, 51) is irradiated with electromagnetic radiation, a maximum deformation level of the reflection layer system is reduced in comparison with a deformation level of an analogously constructed reflective optical element without the deformation reduction layer.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Hendrik Wagner, Rumen Iliew, Walter Pauls
  • Publication number: 20140347721
    Abstract: A film element of an EUV-transmitting wavefront correction device is arranged in a beam path and includes a first layer of first layer material having a first complex refractive index n1=(1??1)+i?1, with a first optical layer thickness, which varies locally over the used region in accordance with a first layer thickness profile, and a second layer of second layer material having a second complex refractive index n2=(1??2)+i?2, with a second optical layer thickness, which varies locally over the used region in accordance with a second layer thickness profile. The first and second layer thickness profiles differ. The deviation ?1 of the real part of the first refractive index from 1 is large relative to the absorption coefficient ?1 of the first layer material and the deviation ?2 of the real part of the second refractive index from 1 is small relative to the absorption coefficient ?2 of the second layer material.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Hendrik Wagner, Christian Wald, Rumen Iliew, Thomas Schicketanz, Toralf Gruner, Walter Pauls, Holger Schmidt