Patents by Inventor Ruoying Chen

Ruoying Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132946
    Abstract: In some embodiments, the present inventions relates generally to compositions, methods and kits for use in discriminating sequence variation between different alleles. More specifically, in some embodiments, the present invention provides for compositions, methods and kits for quantitating rare (e.g., mutant) allelic variants, such as SNPs, or nucleotide (NT) insertions or deletions, in samples comprising abundant (e.g., wild type) allelic variants with high specificity and selectivity. In particular, in some embodiments, the invention relates to a highly selective method for mutation detection referred to as competitive allele-specific TaqMan PCR (“cast-PCR”).
    Type: Application
    Filed: December 22, 2022
    Publication date: April 25, 2024
    Inventors: Caifu CHEN, Ruoying TAN
  • Patent number: 10351848
    Abstract: Provided are a method for constructing a nucleic acid single-stranded cyclic library and the reagents used therein. By the combination of interruption via a transposase with a restricted nick translation reaction, the method realizes a simple and rapid nucleic acid single-stranded cyclic library construction.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 16, 2019
    Assignee: MGI TECH CO., LTD.
    Inventors: Chunyu Geng, Ruoying Chen, Yuan Jiang, Xia Zhao, Rongrong Guo, Lingyu He, Yaqiao Li, Wenwei Zhang, Hui Jiang, Radoje Drmanac
  • Publication number: 20180291371
    Abstract: Provided are a method for constructing a nucleic acid single-stranded cyclic library and the reagents used therein. By the combination of interruption via a transposase with a restricted nick translation reaction, the method realizes a simple and rapid nucleic acid single-stranded cyclic library construction.
    Type: Application
    Filed: November 26, 2014
    Publication date: October 11, 2018
    Applicant: BGI Shenzhen Co., Ltd.
    Inventors: Chunyu Geng, Ruoying Chen, Yuan Jiang, Xia Zhao, Rongrong Guo, Lingyu He, Yaqiao Li, Wenwei Zhang, Hui Jiang, Radoje Drmanac
  • Patent number: 10023906
    Abstract: Provided in the present invention are a method for constructing a nucleic acid single-stranded cyclic library and reagent kit thereof. The method comprises the steps of using a transposase embedding complex to randomly break nucleic acids and connect a first linker; connecting a second linker at a gap; performing a first PCR reaction, wherein the 5? end of one of the primers has a first affinity tag, resulting in a product with two ends connected to different linker sequences; binding the product to a solid vector having a second affinity tag; degenerating and separating single strands having no affinity tag; and cyclizing the single strands.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: July 17, 2018
    Assignee: MGI Tech Co., Ltd.
    Inventors: Chunyu Geng, Rongrong Guo, Ruoying Chen, Lingyu He, Wenwei Zhang, Hui Jiang
  • Publication number: 20180080092
    Abstract: Disclosed are a one-stop treatment method for breaking a nucleic acid by means of a transposase, and a reagent. The method of the present invention comprises the following steps: conducting random breaking of a nucleic acid by using a transposase-embedded complex, the transposase-embedded complex comprising a transposase and a first adaptor comprising a transposase identification sequence; adding a first reagent to conduct treatment, so as to break an absorption effect of the transposase to a target sequence of the nucleic acid; adding a second reagent to conduct treatment, so as to weaken the influence of the first reagent on a follow-up enzyme-catalyzed reaction; and conducting a PCR reaction by using a product generated after the second reagent treatment as a template component, so as to obtain a PCR product of a broken nucleic acid segment whose two ends are connected to adaptors.
    Type: Application
    Filed: October 14, 2014
    Publication date: March 22, 2018
    Applicant: BGI SHENZHEN CO., LIMITED
    Inventors: Chunyu GENG, Rongrong GUO, Ruoying CHEN, Yingxin ZHANG, Andrei ALEXEEV, Hui JIANG, Wenwei ZHANG
  • Publication number: 20180044667
    Abstract: Provided in the present invention are a method for constructing a nucleic acid single-stranded cyclic library and reagents thereof. The method comprises the steps of using a transposase embedding complex to randomly break nucleic acids and connect a first linker; connecting a second linker at a gap; performing a first PCR reaction, wherein the 5? end of one of the primers has a first affinity tag, resulting in a product with two ends connected to different linker sequences; binding the product to a solid vector having a second affinity tag; degenerating and separating single strands having no affinity tag; and cyclizing the single strands.
    Type: Application
    Filed: October 14, 2014
    Publication date: February 15, 2018
    Inventors: Chunyu Geng, Rongrong Guo, Ruoying Chen, Lingyu He, Wenwei Zhang, Hui Jiang
  • Publication number: 20170292153
    Abstract: Provided are a method for breaking a nucleic acid and adding an adaptor by means of a transposase, and a reagent.
    Type: Application
    Filed: October 14, 2014
    Publication date: October 12, 2017
    Applicant: BGI SHENZHEN CO., LIMITED
    Inventors: Chunyu GENG, Ruoying CHEN, Rongrong GUO, Andrei ALEXEEV, Yingxin ZHANG, Hui JIANG, Wenwei ZHANG
  • Patent number: 8637736
    Abstract: A transgenic plant transformed by a Stress-Related Polypeptide (SRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in the plant's increased growth under normal or stress conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated SRPs, and isolated nucleic acid coding SRPs, and vectors and host cells containing the latter.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: January 28, 2014
    Assignee: BASF Plant Science GmbH
    Inventors: Amber Shirley, Damian Allen, Ruoying Chen
  • Publication number: 20130061348
    Abstract: This invention relates generally to nucleic acid sequences encoding proteins that are associated with abiotic stress responses and abiotic stress tolerance in plants. This invention further relates to transformed plant cells with altered metabolic activity compared to a corresponding non transformed wild type plant cell, wherein the metabolic activity is altered by transformation with a Stress-Related Protein (SRP) coding nucleic acid and results in increased tolerance and/or resistance to an environmental stress as compared to a corresponding non-transformed wild type plant cell.
    Type: Application
    Filed: July 16, 2012
    Publication date: March 7, 2013
    Applicant: BASF Plant Science GmbH
    Inventors: Piotr Puzio, Agnes Chardonnens, Amber Shirley, Xi-Qing Wang, Rodrigo Sarria-Millan, Bryan McKersie, Ruoying Chen
  • Patent number: 8247651
    Abstract: This invention relates generally to nucleic acid sequences encoding proteins that are associated with abiotic stress responses and abiotic stress tolerance in plants. This invention further relates to transformed plant cells with altered metabolic activity compared to a corresponding non transformed wild type plant cell, wherein the metabolic activity is altered by transformation with a Stress-Related Protein (SRP) coding nucleic acid and results in increased tolerance and/or resistance to an environmental stress as compared to a corresponding non-transformed wild type plant cell.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: August 21, 2012
    Assignee: BASF Plant Science GmbH
    Inventors: Piotr Puzio, Agnes Chardonnens, Amber Shirley, Xi-Qing Wang, Rodrigo Sarria-Millan, Bryan McKersie, Ruoying Chen
  • Publication number: 20120005777
    Abstract: The present invention relates to a process for the production of fine chemicals in a microorganism, a plant cell, a plant, a plant tissue or parts thereof. The invention furthermore relates to nucleic acid molecules, polypeptides, nucleic acid constructs, vectors, antisense molecules, antibodies, host cells, plant tissue, propagtion material, harvested material, plants, microorganisms as well as agricultural compositions and to their use.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 5, 2012
    Applicant: BASF Plant Science GmbH
    Inventors: Gunnar Plesch, Piotr Puzio, Astrid Blau, Ralf Looser, Birgit Wendel, Beate Kamlage, Agnes Chardonnens, Amber Shirley, Xi-Qing Wang, Rodrigo Sarria-Millan, Bryan McKersie, Ruoying Chen
  • Patent number: 8008545
    Abstract: The present invention relates to a process for the production of fine chemicals in a microorganism, a plant cell, a plant, a plant tissue or parts thereof by increasing or generating the biological activity of a ras-Like GTPase or the homologues thereof and growing the organism under conditions which permit the production of the fine chemicals in the organism. Preferred fine chemicals produced by the present invention include amino acids, carbohydrates, vitamins, fatty acids, and carotenoids.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: August 30, 2011
    Assignee: BASF Plant Science GmbH
    Inventors: Gunnar Plesch, Piotr Puzio, Astrid Blau, Ralf Looser, Birgit Wendel, Beate Kamlage, Agnes Chardonnens, Amber Shirley, Xi-Qing Wang, Rodrigo Sarria-Millan, Bryan McKersie, Ruoying Chen
  • Patent number: 7951991
    Abstract: The invention provides polynucleotides encoding plant prenyl protease polypeptides, vectors, host cells, and transgenic plant comprising the polynucleotides. The invention also provides methods of producing transgenic plants that have altered levels of prenyl protease polynucleotides and polypeptides, and transgenic plants that have increased tolerance to an environmental stress as compared to a wild type plant.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: May 31, 2011
    Assignees: BASF Plant Science GmbH, Performance Plants, Inc.
    Inventors: Rodrigo Sarria-Millan, Stefan Henkes, Damian Allen, Oswaldo da Costa e Silva, Ruoying Chen, Jiangxin Wan, Yafan Huang, Delina Mary-Jane Melo, Monika Maria Kuzma, Angela Patricia Gilley Sample
  • Patent number: 7919684
    Abstract: A transgenic plant transformed by a Protein Kinase Stress-Related Protein (PKSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated PKSRPs, and isolated nucleic acid coding PKSRPs, and vectors and host cells containing the latter.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: April 5, 2011
    Assignee: BASF Plant Science GmbH
    Inventors: Oswaldo da Costa e Silva, Nocha Van Thielen, Ruoying Chen, Hans J. Bohnert, Rodrigo Sarria-Millan
  • Patent number: 7915484
    Abstract: A transgenic plant transformed by a Protein Kinase Stress-Related Protein (PKSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated PKSRPs, and isolated nucleic acid coding PKSRPs, and vectors and host cells containing the latter.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 29, 2011
    Assignee: BASF Plant Science GmbH
    Inventors: Oswaldo da Costa e Silva, Nocha Van Thielen, Ruoying Chen, Hans J. Bohnert, Rodrigo Sarria-Millan
  • Patent number: 7902424
    Abstract: A transgenic plant transformed by a transcription factor stress-related protein (TFSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated TFSRP, and isolated nucleic acid coding TFSRP, and vectors and host cells containing the latter. Further provided are methods of producing transgenic plants expressing TFSRP, methods of increasing expression of other genes of interest using the TFSRP, methods of identifying novel TFSRP, and methods of modifying the expression of TFSRP in plants.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: March 8, 2011
    Assignee: BASF Plant Science GmbH
    Inventors: Oswaldo da Costa e Silva, Nocha van Thielen, Ruoying Chen
  • Publication number: 20110055979
    Abstract: A transgenic plant transformed by a Protein Kinase Stress-Related Protein (PKSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated PKSRPs, and isolated nucleic acid coding PKSRPs, and vectors and host cells containing the latter.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 3, 2011
    Applicant: BASF Plant Science GmbH
    Inventors: Oswaldo da Costa e Silva, Hans J. Bohnert, Nocha van Thielen, Ruoying Chen, Rodrigo Sarria-Millan
  • Patent number: 7893322
    Abstract: A transgenic plant transformed by a transcription factor stress-related protein (TFSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated TFSRP, and isolated nucleic acid coding TFSRP, and vectors and host cells containing the latter. Further provided are methods of producing transgenic plants expressing TFSRP, methods of increasing expression of other genes of interest using the TFSRP, methods of identifying novel TFSRP, and methods of modifying the expression of TFSRP in plants.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 22, 2011
    Assignee: BASF Plant Science GmbH
    Inventors: Oswaldo da Costa e Silva, Nocha Van Thielen, Ruoying Chen
  • Patent number: 7888559
    Abstract: A transgenic plant transformed by a Protein Kinase Stress-Related Protein (PKSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated PKSRPs, and isolated nucleic acid coding PKSRPs, and vectors and host cells containing the latter.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: February 15, 2011
    Assignee: BASF Plant Science GmbH
    Inventors: Oswaldo da Costa e Silva, Nocha Van Thielen, Ruoying Chen, Hans J. Bohnert, Rodrigo Sarria-Millan
  • Publication number: 20110030094
    Abstract: This invention relates generally to nucleic acid sequences encoding proteins that are associated with abiotic stress responses and abiotic stress tolerance in plants. This invention further relates to transformed plant cells with altered metabolic activity compared to a corresponding non transformed wild type plant cell, wherein the metabolic activity is altered by transformation with a Stress-Related Protein (SRP) coding nucleic acid and results in increased tolerance and/or resistance to an environmental stress as compared to a corresponding non-transformed wild type plant cell.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 3, 2011
    Applicant: BASF Plant Science GmbH
    Inventors: Piotr Puzio, Agnes Chardonnens, Amber Shirley, Xi-Qing Wang, Rodrigo Sarria-Millan, Bryan Mckersie, Ruoying Chen