Patents by Inventor Ruoyu HE

Ruoyu HE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11777211
    Abstract: An impedance matching method for a low-profile ultra-wideband array antenna is provided. The method includes: connecting an arm of a balanced end of a hyperbolic microstrip balun in series with an open circuit line; directly coupling the open circuit line to a radiator layer; connecting another arm of the balanced end of the hyperbolic microstrip balun to the radiator layer via a metallized via hole, and welding an unbalanced end of the hyperbolic microstrip balun to a coaxial line, so that the coaxial line feeds a power to the antenna via the hyperbolic microstrip balun. In this method, the open circuit line is integrated between the hyperbolic microstrip balun and the radiator layer of the antenna to achieve an impedance matching of the ultra-wideband antenna and to simplify a structure of a matching circuit.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: October 3, 2023
    Assignee: Hangzhou Dianzi University
    Inventors: Zhiqun Cheng, Peng Gao, Ruoyu He, Zhen Wang
  • Patent number: 11581645
    Abstract: A microstrip ultra-wideband antenna is provided, including: an upper dielectric substrate, a radiation patch, an open-circuit line, a short-circuit line, a ground plane, a lower dielectric substrate, a vertical dielectric substrate, isolation walls, a hyperbolic microstrip balun feeder and an ideal wave port. The radiation patch is attached to a lower surface of the upper dielectric substrate; the ground plane is attached to an upper surface of the lower dielectric substrate; the short-circuit line and the open-circuit line are attached to a rear surface and a front surface of the vertical dielectric substrate respectively; the hyperbolic microstrip balun feeder is attached to the front and rear surface of the vertical dielectric substrate; the isolation walls are located between the upper dielectric substrate and the lower dielectric substrate perpendicularly to an end of the radiation patch; and the ideal wave port is provided below the hyperbolic microstrip balun feeder.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: February 14, 2023
    Assignee: HANGZHOU DIANZI UNIVERSITY
    Inventors: Zhiqun Cheng, Zhen Wang, Ruoyu He, Peng Gao
  • Patent number: 11462820
    Abstract: The present disclosure provides a multi-band base station antenna for scattering suppression, including a high-band dual-polarized antenna and a low-band dual-polarized antenna. The operating band of the high-band dual-polarized antenna is 1.7-3.0 GHz, which are four; the operating band of the low-band dual-polarized antenna operates is 0.69-0.96 GHz, and is comprised of two intersected dipoles; above the high-band dual-polarized antennas, a spacing between the high-band dual-polarized antenna and the low-band dual-polarized antenna is smaller than the quarter wavelength corresponding to the low-band dual-polarized antenna; the low-band dual-polarized antenna is provided with several rectangular open slots at equal spacings, with symmetrical openings on both sides of the dipole, with a width of 1-1.5 mm and a length of 4-to 6 mm; and a ratio of the sum of widths of the open slots to a length of an arm of the dipole is greater than 0.16 and less than 0.24.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: October 4, 2022
    Assignee: Hangzhou Dianzi University
    Inventors: Zhiqun Cheng, Peng Gao, Ruoyu He, Zhen Wang
  • Publication number: 20220149524
    Abstract: An impedance matching method for a low-profile ultra-wideband array antenna is provided. The method includes: connecting an arm of a balanced end of a hyperbolic microstrip balun in series with an open circuit line; directly coupling the open circuit line to a radiator layer; connecting another arm of the balanced end of the hyperbolic microstrip balun to the radiator layer via a metallized via hole, and welding an unbalanced end of the hyperbolic microstrip balun to a coaxial line, so that the coaxial line feeds a power to the antenna via the hyperbolic microstrip balun. In this method, the open circuit line is integrated between the hyperbolic microstrip balun and the radiator layer of the antenna to achieve an impedance matching of the ultra-wideband antenna and to simplify a structure of a matching circuit.
    Type: Application
    Filed: July 21, 2021
    Publication date: May 12, 2022
    Applicant: Hangzhou Dianzi University
    Inventors: Zhiqun CHENG, Peng GAO, Ruoyu HE, Zhen WANG
  • Publication number: 20220149507
    Abstract: The present disclosure provides a multi-band base station antenna for scattering suppression, including a high-band dual-polarized antenna and a low-band dual-polarized antenna. The operating band of the high-band dual-polarized antenna is 1.7-3.0 GHz, which are four; the operating band of the low-band dual-polarized antenna operates is 0.69-0.96 GHz, and is comprised of two intersected dipoles; above the high-band dual-polarized antennas, a spacing between the high-band dual-polarized antenna and the low-band dual-polarized antenna is smaller than the quarter wavelength corresponding to the low-band dual-polarized antenna; the low-band dual-polarized antenna is provided with several rectangular open slots at equal spacings, with symmetrical openings on both sides of the dipole, with a width of 1-1.5 mm and a length of 4-to 6 mm; and a ratio of the sum of widths of the open slots to a length of an arm of the dipole is greater than 0.16 and less than 0.24.
    Type: Application
    Filed: July 21, 2021
    Publication date: May 12, 2022
    Applicant: Hangzhou Dianzi University
    Inventors: Zhiqun CHENG, Peng GAO, Ruoyu HE, Zhen WANG
  • Publication number: 20220149523
    Abstract: A microstrip ultra-wideband antenna is provided, including: an upper dielectric substrate, a radiation patch, an open-circuit line, a short-circuit line, a ground plane, a lower dielectric substrate, a vertical dielectric substrate, isolation walls, a hyperbolic microstrip balun feeder and an ideal wave port. The radiation patch is attached to a lower surface of the upper dielectric substrate; the ground plane is attached to an upper surface of the lower dielectric substrate; the short-circuit line and the open-circuit line are attached to a rear surface and a front surface of the vertical dielectric substrate respectively; the hyperbolic microstrip balun feeder is attached to the front and rear surface of the vertical dielectric substrate; the isolation walls are located between the upper dielectric substrate and the lower dielectric substrate perpendicularly to an end of the radiation patch; and the ideal wave port is provided below the hyperbolic microstrip balun feeder.
    Type: Application
    Filed: July 21, 2021
    Publication date: May 12, 2022
    Applicant: Hangzhou Dianzi University
    Inventors: Zhiqun CHENG, Zhen WANG, Ruoyu HE, Peng GAO