Patents by Inventor Ruoyu Hou

Ruoyu Hou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230402342
    Abstract: Embedded die packaging for high voltage, high temperature operation of power semiconductor switching devices is disclosed, wherein a power semiconductor die is embedded in laminated body comprising a layer stack of a plurality of dielectric layers and electrically conductive layers, and wherein a first thermal pad on one side of the package and a second thermal pad on an opposite side of the package provides for dual-side cooling. Example embodiments of the dual-side cooled package may be based on a bottom-side cooled layup with a primary bottom-side thermal pad and a secondary top-side thermal pad, or a top-side cooled layup with primary top-side thermal pad and a secondary bottom side thermal pad, using layups with or without a leadframe. For example, the power semiconductor switching device comprises a GaN power transistor, such as a GaN HEMT rated for operation at ?100V or ?600V, for switching tens or hundreds of Amps.
    Type: Application
    Filed: January 9, 2023
    Publication date: December 14, 2023
    Inventors: Di CHEN, Juncheng LU, Ahmad MIZAN, Ruoyu HOU, Abhinandan DIXIT
  • Patent number: 11831303
    Abstract: High accuracy current sense circuitry for power switching devices comprising GaN power transistors provides for current feedback functions, e.g. current loop control, over-current protection (OCP) and short-circuit protection (SCP). The current sense circuitry comprises a current mirror sense GaN transistor (Sense_GaN) and a power GaN transistor (Power_GaN) and a sampling circuit. The sampling circuit comprises first and second stage operational amplifiers to provide fast response and improved current sense accuracy, e.g. better than 1%, over a range of junction temperatures Tj. The Sense_GaN, Power_GaN and first stage operational amplifier have a common ground referenced to a Kelvin Source of the Power_GaN, so that the Sense_GaN and Power_GaN operate with the same gate-to-source voltage Vgs, to provide an accurate current ratio. Applications include current sensing for switching mode power supplies that need high speed and lossless current sense for current protection and feedback.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: November 28, 2023
    Assignee: GAN SYSTEMS INC.
    Inventors: Xuechao Liu, Ruoyu Hou
  • Publication number: 20230282540
    Abstract: A multi-zone substrate for a power stage assembly comprising at least one bottom-cooled semiconductor power switching device and driver components, for integration on a common substrate. A first zone provides electrical connections and a thermal pad for mounting at least one bottom-cooled semiconductor switching device, the first zone comprising dielectric and conductive layers which provide a power substrate optimized for thermal performance. A second zone provides electrical connections for mounting driver components, the second zone comprising dielectric and conductive layers providing a driver substrate optimized for electrical performance. For example, the first zone comprises a single layer metal interconnect structure with a first thermal resistance, the second zone comprises a multi-layer metal interconnect structure with a second thermal resistance, the first thermal resistance being less than the second thermal resistance.
    Type: Application
    Filed: November 3, 2022
    Publication date: September 7, 2023
    Inventors: Ruoyu HOU, Juncheng LU, Andrew DICKSON
  • Patent number: 11736100
    Abstract: An active gate voltage control circuit for a gate driver of a power semiconductor switching device comprising a power semiconductor transistor, such as a GaN HEMT, provides active gate voltage control comprising current burst mode operation and protection mode operation. The gate-source turn-on voltage Vgs(on) is increased in burst mode operation, to allow for a temporary increase of saturation current. In protection mode operation, a multi-stage turn-off may be implemented, comprising reducing Vgs(on) to implement fast soft turn-off, followed by full turn-off to bring Vgs(on) below threshold voltage, to reduce switching transients such as Vds spikes. Circuits of example embodiments provide for burst mode operation for enhanced saturation current, to increase robustness of enhancement mode GaN power switching devices, e.g. under overcurrent and short circuit conditions, or to provide active gate voltage control which adjusts dynamically to specific operating conditions or events.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: August 22, 2023
    Assignee: GAN SYSTEMS INC.
    Inventors: Ruoyu Hou, Juncheng Lu, Larry Spaziani
  • Publication number: 20220360259
    Abstract: An active gate voltage control circuit for a gate driver of a power semiconductor switching device comprising a power semiconductor transistor, such as a GaN HEMT, provides active gate voltage control comprising current burst mode operation and protection mode operation. The gate-source turn-on voltage Vgs(on) is increased in burst mode operation, to allow for a temporary increase of saturation current. In protection mode operation, a multi-stage turn-off may be implemented, comprising reducing Vgs(on) to implement fast soft turn-off, followed by full turn-off to bring Vgs(on) below threshold voltage, to reduce switching transients such as Vds spikes. Circuits of example embodiments provide for burst mode operation for enhanced saturation current, to increase robustness of enhancement mode GaN power switching devices, e.g. under overcurrent and short circuit conditions, or to provide active gate voltage control which adjusts dynamically to specific operating conditions or events.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 10, 2022
    Inventors: Ruoyu HOU, Juncheng LU, Larry SPAZIANI
  • Publication number: 20220182048
    Abstract: High accuracy current sense circuitry for power switching devices comprising GaN power transistors provides for current feedback functions, e.g. current loop control, over-current protection (OCP) and short-circuit protection (SCP). The current sense circuitry comprises a current mirror sense GaN transistor (Sense_GaN) and a power GaN transistor (Power_GaN) and a sampling circuit. The sampling circuit comprises first and second stage operational amplifiers to provide fast response and improved current sense accuracy, e.g. better than 1%, over a range of junction temperatures Tj. The Sense_GaN, Power_GaN and first stage operational amplifier have a common ground referenced to a Kelvin Source of the Power_GaN, so that the Sense_GaN and Power_GaN operate with the same gate-to-source voltage Vgs, to provide an accurate current ratio. Applications include current sensing for switching mode power supplies that need high speed and lossless current sense for current protection and feedback.
    Type: Application
    Filed: November 23, 2021
    Publication date: June 9, 2022
    Inventors: Xuechao LIU, Ruoyu HOU
  • Patent number: 10576830
    Abstract: Electric generators are described herein. The electric generators include an interior machine formed of an interior rotor and an interior portion of a stator, and an exterior machine substantially concentric to the interior machine. The exterior machine includes: an exterior rotor substantially concentric to the interior rotor, and an exterior portion of the stator. Each of the interior machine and the external machine are driven by an engine to produce a respective current. The described electric generators can be used in diesel electric locomotives.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: March 3, 2020
    Assignee: Enedym Inc.
    Inventors: Ali Emadi, Ruoyu Hou, Yinye Yang
  • Patent number: 9758047
    Abstract: Various embodiments are described herein for a dual-voltage charging system for electrified vehicles. In one example embodiment, the dual-voltage charging system comprises an integrated active filter auxiliary power module (AFAPM), the integrated AFAPM is applied as an active power filter (APF) to compensate low frequency harmonics in a high voltage (HV) battery charger when the HV battery is charging, and applied as a low voltage (LV) battery charger auxiliary power module (APM) when the HV battery stops the charging and starts to charge the LV battery.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: September 12, 2017
    Assignee: McMaster University
    Inventors: Ruoyu Hou, Ali Emadi
  • Publication number: 20170021732
    Abstract: Electric generators are described herein. The electric generators include an interior machine formed of an interior rotor and an interior portion of a stator, and an exterior machine substantially concentric to the interior machine. The exterior machine includes: an exterior rotor substantially concentric to the interior rotor, and an exterior portion of the stator. Each of the interior machine and the external machine are driven by an engine to produce a respective current. The described electric generators can be used in diesel electric locomotives.
    Type: Application
    Filed: April 1, 2016
    Publication date: January 26, 2017
    Inventors: Ali Emadi, Ruoyu Hou, Yinye Yang
  • Publication number: 20160236580
    Abstract: Various embodiments are described herein for a dual-voltage charging system for electrified vehicles. In one example embodiment, the dual-voltage charging system comprises an integrated active filter auxiliary power module (AFAPM) that applies the integrated AFAPM as an active power filter (APF) to compensate the low frequency harmonics in the high voltage (HV) battery charger when the HV battery is charging, and applies the integrated AFAPM as a low voltage (LV) battery charger auxiliary power module (APM) when the HV battery stops charging and starts to charge the LV battery.
    Type: Application
    Filed: November 12, 2015
    Publication date: August 18, 2016
    Inventors: Ruoyu Hou, Ali Emadi