Patents by Inventor Rupa Budhia
Rupa Budhia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240422104Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: ApplicationFiled: September 3, 2024Publication date: December 19, 2024Inventors: William Brad MATTHEWS, Rupa BUDHIA, Puneet AGARWAL
-
Patent number: 12149437Abstract: Automatic load-balancing techniques in a network device are used to select, from a multipath group, a path to assign to a flow based on observed state attributes such as path state(s), device state(s), port state(s), or queue state(s) of the paths. A mapping of the path previously assigned to a flow or group of flows (e.g., on account of having then been optimal in view of the observed state attributes) is maintained, for example, in a table. So long as the flow(s) are active and the path is still valid, the mapped path is selected for subsequent data units belonging to the flow(s), which may, among other effects, avoid or reduce packet re-ordering. However, if the flow(s) go idle, or if the mapped path fails, a new optimal path may be assigned to the flow(s) from the multipath group.Type: GrantFiled: October 12, 2023Date of Patent: November 19, 2024Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Rupa Budhia
-
Patent number: 12081444Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: GrantFiled: April 28, 2023Date of Patent: September 3, 2024Assignee: Innovium, Inc.Inventors: William Brad Matthews, Rupa Budhia, Puneet Agarwal
-
Publication number: 20240257262Abstract: A pre-scaled accumulated byte count of a port of a network node over a sampling period is scaled with a scaling factor to generate a scaled accumulated byte count. The pre-scaled accumulated byte count represents a total number of bytes in packets transferred by the port. The scaling factor represents a first port-specific attribute of the port and scales a port-specific maximum throughput of the port to a specific maximum port throughput of the network node. An iterative vector encoding method is applied to the scaled accumulated byte count to generate an encoded bit vector comprising bits respectively ordered bit positions. Each set bit of the encoded bit vector represents a respective weighted value of port utilization of the port. The encoded bit vector is stored, at a map location, in an operational statistics map.Type: ApplicationFiled: July 28, 2023Publication date: August 1, 2024Inventors: William Brad MATTHEWS, Rupa BUDHIA, Meg Pei LIN
-
Patent number: 11943128Abstract: A switch or other network device may be configured as an ingress edge telemetry node in a telemetry domain. The ingress edge telemetry node may clone certain data units it processes, for example in response to certain telemetry triggers being met. The ingress edge telemetry node may further inject telemetry and/or other data into the cloned data unit. The cloned data unit continues along the same path as the original data unit until it reaches an egress edge telemetry node in the telemetry domain. The second node extracts the telemetry data from the cloned data unit and sends telemetry information based thereon to a telemetry collector, while the original data unit continues to its final destination. Nodes along the path between the first node and the second node may be configured as transit telemetry nodes that insert or otherwise update the telemetry data.Type: GrantFiled: February 10, 2023Date of Patent: March 26, 2024Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Meg Pei Lin, Rupa Budhia
-
Patent number: 11895015Abstract: A packet to be forwarded over a computer network to a destination is received. A group of multiple network paths is available to forward to the packet to the destination. One or more path selection factors are determined to be used to identify a specific network load balancing algorithm to select a specific network path from the group of multiple network paths. The one or more path selection factors include at least one path selection factor determined based at least in part on a dynamic state of the computer network or a network node in the computer network. In response to selecting, by the specific network load balancing algorithm, the specific network path from among the group of multiple network paths, the packet is forwarded over the specific network path.Type: GrantFiled: October 28, 2022Date of Patent: February 6, 2024Assignee: Marvell Asia Pte LtdInventors: Rupa Budhia, William Brad Matthews, Puneet Agarwal
-
Patent number: 11888743Abstract: Prefix entries are efficiently stored at a networking device for performance of a longest prefix match against the stored entries. A prefix entry generally refers to a data entry which maps a particular prefix to one or more actions to be performed by a networking device with respect to network packets or other data structures associated with a network packet that matches the particular prefix. In the context of a router networking device handling a data packet, the one or more actions may include, for example, forwarding a received network packet to a particular “next hop” networking device in order to progress the network packet towards its final destination, applying firewall rule(s), manipulating the packet, and so forth. To reduce a total amount of space occupied by a prefix tree in storage, each of the nodes of a prefix tree may be configured to store only an incremental portion of a prefix relative to its parent node.Type: GrantFiled: December 3, 2019Date of Patent: January 30, 2024Assignee: Innovium, Inc.Inventors: Puneet Agarwal, Rupa Budhia, Meg Lin
-
Patent number: 11824764Abstract: Automatic load-balancing techniques in a network device are used to select, from a multipath group, a path to assign to a flow based on observed state attributes such as path state(s), device state(s), port state(s), or queue state(s) of the paths. A mapping of the path previously assigned to a flow or group of flows (e.g., on account of having then been optimal in view of the observed state attributes) is maintained, for example, in a table. So long as the flow(s) are active and the path is still valid, the mapped path is selected for subsequent data units belonging to the flow(s), which may, among other effects, avoid or reduce packet re-ordering. However, if the flow(s) go idle, or if the mapped path fails, a new optimal path may be assigned to the flow(s) from the multipath group.Type: GrantFiled: September 7, 2022Date of Patent: November 21, 2023Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Rupa Budhia
-
Publication number: 20230269192Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: ApplicationFiled: April 28, 2023Publication date: August 24, 2023Inventors: William Brad MATTHEWS, Rupa BUDHIA, Puneet AGARWAL
-
Patent number: 11736388Abstract: Approaches, techniques, and mechanisms are disclosed for assigning paths to network packets. The path assignment techniques utilize path state information and/or other criteria to determine whether to route a packet along a primary candidate path selected for the packet, or one or more alternative candidate paths selected for the packet. According to an embodiment, network traffic is at least partially balanced by redistributing only a portion of the traffic that would have been assigned to a given primary path. Move-eligibility criteria are applied to traffic to determine whether a given packet is eligible for reassignment from a primary path to an alternative path. The move-eligibility criteria determine which portion of the network traffic to move and which portion to allow to proceed as normal. In an embodiment, the criteria and functions used to determine whether a packet is redistributable are adjusted over time based on path state information.Type: GrantFiled: July 3, 2021Date of Patent: August 22, 2023Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Meg Pei Lin, Rupa Budhia
-
Patent number: 11652750Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: GrantFiled: January 20, 2022Date of Patent: May 16, 2023Assignee: Innovium, Inc.Inventors: William Brad Matthews, Rupa Budhia, Puneet Agarwal
-
Patent number: 11621904Abstract: A switch or other network device may be configured as an ingress edge telemetry node in a telemetry domain. The ingress edge telemetry node may clone certain data units it processes, for example in response to certain telemetry triggers being met. The ingress edge telemetry node may further inject telemetry and/or other data into the cloned data unit. The cloned data unit continues along the same path as the original data unit until it reaches an egress edge telemetry node in the telemetry domain. The second node extracts the telemetry data from the cloned data unit and sends telemetry information based thereon to a telemetry collector, while the original data unit continues to its final destination. Nodes along the path between the first node and the second node may be configured as transit telemetry nodes that insert or otherwise update the telemetry data.Type: GrantFiled: November 6, 2020Date of Patent: April 4, 2023Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Meg Pei Lin, Rupa Budhia
-
Patent number: 11483232Abstract: Automatic load-balancing techniques in a network device are used to select, from a multipath group, a path to assign to a flow based on observed state attributes such as path state(s), device state(s), port state(s), or queue state(s) of the paths. A mapping of the path previously assigned to a flow or group of flows (e.g., on account of having then been optimal in view of the observed state attributes) is maintained, for example, in a table. So long as the flow(s) are active and the path is still valid, the mapped path is selected for subsequent data units belonging to the flow(s), which may, among other effects, avoid or reduce packet re-ordering. However, if the flow(s) go idle, or if the mapped path fails, a new optimal path may be assigned to the flow(s) from the multipath group.Type: GrantFiled: March 4, 2021Date of Patent: October 25, 2022Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Rupa Budhia
-
Publication number: 20220150174Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: ApplicationFiled: January 20, 2022Publication date: May 12, 2022Inventors: William Brad Matthews, Rupa Budhia, Puneet Agarwal
-
Patent number: 11245632Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: GrantFiled: July 13, 2020Date of Patent: February 8, 2022Assignee: Innovium, Inc.Inventors: William Brad Matthews, Rupa Budhia, Puneet Agarwal
-
Publication number: 20220014473Abstract: Packet-switching operations in a network device are managed based on the detection of excessive-rate traffic flows. A network device receives a data unit, determines the traffic flow to which the data unit belongs, and updates flow tracking information for that flow. The network device utilizes the tracking information to determine when a rate at which the network device is receiving data belonging to the flow exceeds an excessive-rate threshold and is thus an excessive-rate flow. The network device may enable one or more excessive-rate policies on an excessive-rate traffic flow. Such a policy may include any number of features that affect how the device handles data units belonging to the flow, such as excessive-rate notification, differentiated discard, differentiated congestion notification, and reprioritization. Memory and other resource optimizations for such flow tracking and management are also described.Type: ApplicationFiled: July 13, 2020Publication date: January 13, 2022Inventors: William Brad Matthews, Rupa Budhia, Puneet Agarwal
-
Patent number: 11128561Abstract: Automatic load-balancing techniques in a network device are used to select, from a multipath group, a path to assign to a flow based on observed state attributes such as path state(s), device state(s), port state(s), or queue state(s) of the paths. A mapping of the path previously assigned to a flow or group of flows (e.g., on account of having then been optimal in view of the observed state attributes) is maintained, for example, in a table. So long as the flow(s) are active and the path is still valid, the mapped path is selected for subsequent data units belonging to the flow(s), which may, among other effects, avoid or reduce packet re-ordering. However, if the flow(s) go idle, or if the mapped path fails, a new optimal path may be assigned to the flow(s) from the multipath group.Type: GrantFiled: July 29, 2019Date of Patent: September 21, 2021Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Rupa Budhia
-
Patent number: 11057307Abstract: Approaches, techniques, and mechanisms are disclosed for assigning paths to network packets. The path assignment techniques utilize path state information and/or other criteria to determine whether to route a packet along a primary candidate path selected for the packet, or one or more alternative candidate paths selected for the packet. According to an embodiment, network traffic is at least partially balanced by redistributing only a portion of the traffic that would have been assigned to a given primary path. Move-eligibility criteria are applied to traffic to determine whether a given packet is eligible for reassignment from a primary path to an alternative path. The move-eligibility criteria determine which portion of the network traffic to move and which portion to allow to proceed as normal. In an embodiment, the criteria and functions used to determine whether a packet is redistributable are adjusted over time based on path state information.Type: GrantFiled: January 13, 2020Date of Patent: July 6, 2021Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Meg Pei Lin, Rupa Budhia
-
Patent number: 10574577Abstract: Approaches, techniques, and mechanisms are disclosed for assigning paths to network packets. The path assignment techniques utilize path state information and/or other criteria to determine whether to route a packet along a primary candidate path selected for the packet, or one or more alternative candidate paths selected for the packet. According to an embodiment, network traffic is at least partially balanced by redistributing only a portion of the traffic that would have been assigned to a given primary path. Move-eligibility criteria are applied to traffic to determine whether a given packet is eligible for reassignment from a primary path to an alternative path. The move-eligibility criteria determine which portion of the network traffic to move and which portion to allow to proceed as normal. In an embodiment, the criteria and functions used to determine whether a packet is redistributable are adjusted over time based on path state information.Type: GrantFiled: March 1, 2017Date of Patent: February 25, 2020Assignee: Innovium, Inc.Inventors: William Brad Matthews, Puneet Agarwal, Meg Lin, Rupa Budhia
-
Patent number: 10516613Abstract: Prefix entries are efficiently stored at a networking device for performance of a longest prefix match against the stored entries. A prefix entry generally refers to a data entry which maps a particular prefix to one or more actions to be performed by a networking device with respect to network packets or other data structures associated with a network packet that matches the particular prefix. In the context of a router networking device handling a data packet, the one or more actions may include, for example, forwarding a received network packet to a particular “next hop” networking device in order to progress the network packet towards its final destination, applying firewall rule(s), manipulating the packet, and so forth. To reduce a total amount of space occupied by a prefix tree in storage, each of the nodes of a prefix tree may be configured to store only an incremental portion of a prefix relative to its parent node.Type: GrantFiled: October 11, 2016Date of Patent: December 24, 2019Assignee: Innovium, Inc.Inventors: Puneet Agarwal, Rupa Budhia, Meg Lin